基于统计小波变换建模的纹理分割

N. Nikooienejad, H. Amindavar, K. Faez
{"title":"基于统计小波变换建模的纹理分割","authors":"N. Nikooienejad, H. Amindavar, K. Faez","doi":"10.1109/ICSIPA.2009.5478622","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new approach in texture segmentation utilizing 2D wavelet transform. The HL and LH subbands coefficients as the features are mapped into the probability space by 2D Generalized Gaussian probability density function (GG-PDF) to achieve preliminary segmentation. The features in PDF are classified into homogenous regions via multilevel thresholding after wavelet de-noising. The edges can be extracted from the segmented images. To verify the accuracy of GG-PDF, 2D bootstrap algorithm is used. In addition, we test our algorithm in noisy environment to check its reliability. Finally the performance of the proposed algorithm is demonstrated on variety of Bordatz textures and some textual images.","PeriodicalId":400165,"journal":{"name":"2009 IEEE International Conference on Signal and Image Processing Applications","volume":"65 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Texture segmentation via statistical wavelet transform modeling\",\"authors\":\"N. Nikooienejad, H. Amindavar, K. Faez\",\"doi\":\"10.1109/ICSIPA.2009.5478622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new approach in texture segmentation utilizing 2D wavelet transform. The HL and LH subbands coefficients as the features are mapped into the probability space by 2D Generalized Gaussian probability density function (GG-PDF) to achieve preliminary segmentation. The features in PDF are classified into homogenous regions via multilevel thresholding after wavelet de-noising. The edges can be extracted from the segmented images. To verify the accuracy of GG-PDF, 2D bootstrap algorithm is used. In addition, we test our algorithm in noisy environment to check its reliability. Finally the performance of the proposed algorithm is demonstrated on variety of Bordatz textures and some textual images.\",\"PeriodicalId\":400165,\"journal\":{\"name\":\"2009 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"65 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2009.5478622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2009.5478622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于二维小波变换的纹理分割方法。将HL和LH子带系数作为特征,通过二维广义高斯概率密度函数(GG-PDF)映射到概率空间中,实现初步分割。在小波去噪后,采用多级阈值法将PDF中的特征划分为均匀区域。可以从分割后的图像中提取边缘。为了验证GG-PDF的精度,采用了二维自举算法。此外,我们还在噪声环境下对算法进行了测试,以检验算法的可靠性。最后在多种Bordatz纹理和一些文本图像上验证了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Texture segmentation via statistical wavelet transform modeling
In this paper, we introduce a new approach in texture segmentation utilizing 2D wavelet transform. The HL and LH subbands coefficients as the features are mapped into the probability space by 2D Generalized Gaussian probability density function (GG-PDF) to achieve preliminary segmentation. The features in PDF are classified into homogenous regions via multilevel thresholding after wavelet de-noising. The edges can be extracted from the segmented images. To verify the accuracy of GG-PDF, 2D bootstrap algorithm is used. In addition, we test our algorithm in noisy environment to check its reliability. Finally the performance of the proposed algorithm is demonstrated on variety of Bordatz textures and some textual images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信