基于树莓派的全轮移动机器人的设计与实现

K. Krinkin, E. Stotskaya, Yury Stotskiy
{"title":"基于树莓派的全轮移动机器人的设计与实现","authors":"K. Krinkin, E. Stotskaya, Yury Stotskiy","doi":"10.1109/AINL-ISMW-FRUCT.2015.7382967","DOIUrl":null,"url":null,"abstract":"Nowadays simultaneous localization and mapping (SLAM) algorithms are being tested at least in two phases: software simulation and real hardware platform testing. This paper describes hardware design and control software for small size omni-directional wheels robot implemented for indoor testing SLAM algorithms.","PeriodicalId":122232,"journal":{"name":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","volume":"79 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Design and implementation Raspberry Pi-based omni-wheel mobile robot\",\"authors\":\"K. Krinkin, E. Stotskaya, Yury Stotskiy\",\"doi\":\"10.1109/AINL-ISMW-FRUCT.2015.7382967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays simultaneous localization and mapping (SLAM) algorithms are being tested at least in two phases: software simulation and real hardware platform testing. This paper describes hardware design and control software for small size omni-directional wheels robot implemented for indoor testing SLAM algorithms.\",\"PeriodicalId\":122232,\"journal\":{\"name\":\"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)\",\"volume\":\"79 19\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

目前,同步定位和地图(SLAM)算法的测试至少分为两个阶段:软件仿真和实际硬件平台测试。介绍了一种用于室内测试SLAM算法的小型全向轮式机器人的硬件设计和控制软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and implementation Raspberry Pi-based omni-wheel mobile robot
Nowadays simultaneous localization and mapping (SLAM) algorithms are being tested at least in two phases: software simulation and real hardware platform testing. This paper describes hardware design and control software for small size omni-directional wheels robot implemented for indoor testing SLAM algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信