定量等式逻辑的不动点

R. Mardare, P. Panangaden, G. Plotkin
{"title":"定量等式逻辑的不动点","authors":"R. Mardare, P. Panangaden, G. Plotkin","doi":"10.1109/LICS52264.2021.9470662","DOIUrl":null,"url":null,"abstract":"We develop a fixed-point extension of quantitative equational logic and give semantics in one-bounded complete quantitative algebras. Unlike previous related work about fixed-points in metric spaces, we are working with the notion of approximate equality rather than exact equality. The result is a novel theory of fixed points which can not only provide solutions to the traditional fixed-point equations but we can also define the rate of convergence to the fixed point. We show that such a theory is the quantitative analogue of a Conway theory and also of an iteration theory; and it reflects the metric coinduction principle. We study the Bellman equation for a Markov decision process as an illustrative example.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fixed-Points for Quantitative Equational Logics\",\"authors\":\"R. Mardare, P. Panangaden, G. Plotkin\",\"doi\":\"10.1109/LICS52264.2021.9470662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a fixed-point extension of quantitative equational logic and give semantics in one-bounded complete quantitative algebras. Unlike previous related work about fixed-points in metric spaces, we are working with the notion of approximate equality rather than exact equality. The result is a novel theory of fixed points which can not only provide solutions to the traditional fixed-point equations but we can also define the rate of convergence to the fixed point. We show that such a theory is the quantitative analogue of a Conway theory and also of an iteration theory; and it reflects the metric coinduction principle. We study the Bellman equation for a Markov decision process as an illustrative example.\",\"PeriodicalId\":174663,\"journal\":{\"name\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS52264.2021.9470662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

给出了定量方程逻辑的不动点推广,并给出了单界完备定量代数的语义。不同于之前关于度量空间不动点的相关工作,我们使用的是近似相等的概念而不是精确相等的概念。这是一种新的不动点理论,不仅可以给出传统不动点方程的解,而且可以定义到不动点的收敛速度。我们证明了这样一个理论是康威理论和迭代理论的定量模拟;它反映了度规协归纳原理。我们以马尔可夫决策过程的Bellman方程为例进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-Points for Quantitative Equational Logics
We develop a fixed-point extension of quantitative equational logic and give semantics in one-bounded complete quantitative algebras. Unlike previous related work about fixed-points in metric spaces, we are working with the notion of approximate equality rather than exact equality. The result is a novel theory of fixed points which can not only provide solutions to the traditional fixed-point equations but we can also define the rate of convergence to the fixed point. We show that such a theory is the quantitative analogue of a Conway theory and also of an iteration theory; and it reflects the metric coinduction principle. We study the Bellman equation for a Markov decision process as an illustrative example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信