使用fisher-rao距离聚类

J. Strapasson, Julianna Pinele, S. Costa
{"title":"使用fisher-rao距离聚类","authors":"J. Strapasson, Julianna Pinele, S. Costa","doi":"10.1109/SAM.2016.7569717","DOIUrl":null,"url":null,"abstract":"In this paper we consider the Fisher-Rao distance in the space of the multivariate diagonal Gaussian distributions for clustering methods. Centroids in this space are derived and used to introduce two clustering algorithms for diagonal Gaussian mixture models associated to this metric: the k-means and the hierarchical clustering. These algorithms allow to reduce the number of components of such mixture models in the context of image segmentation. The algorithms presented here are compared with the Bregman hard and hierarchical clustering algorithms regarding the advantages of each method in different situations.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Clustering using the fisher-rao distance\",\"authors\":\"J. Strapasson, Julianna Pinele, S. Costa\",\"doi\":\"10.1109/SAM.2016.7569717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the Fisher-Rao distance in the space of the multivariate diagonal Gaussian distributions for clustering methods. Centroids in this space are derived and used to introduce two clustering algorithms for diagonal Gaussian mixture models associated to this metric: the k-means and the hierarchical clustering. These algorithms allow to reduce the number of components of such mixture models in the context of image segmentation. The algorithms presented here are compared with the Bregman hard and hierarchical clustering algorithms regarding the advantages of each method in different situations.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文考虑多元对角高斯分布空间中的Fisher-Rao距离用于聚类方法。该空间中的质心被导出并用于引入与该度量相关的对角线高斯混合模型的两种聚类算法:k-means和分层聚类。这些算法允许在图像分割的背景下减少这种混合模型的组件数量。本文所提出的算法与Bregman硬聚类算法和分层聚类算法在不同情况下的优势进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering using the fisher-rao distance
In this paper we consider the Fisher-Rao distance in the space of the multivariate diagonal Gaussian distributions for clustering methods. Centroids in this space are derived and used to introduce two clustering algorithms for diagonal Gaussian mixture models associated to this metric: the k-means and the hierarchical clustering. These algorithms allow to reduce the number of components of such mixture models in the context of image segmentation. The algorithms presented here are compared with the Bregman hard and hierarchical clustering algorithms regarding the advantages of each method in different situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信