单开关均衡充电器集成SEPIC和均衡器采用串联谐振电压倍增器串联连接的储能电池/模块

M. Uno, A. Kukita
{"title":"单开关均衡充电器集成SEPIC和均衡器采用串联谐振电压倍增器串联连接的储能电池/模块","authors":"M. Uno, A. Kukita","doi":"10.1109/ECCE-ASIA.2013.6579112","DOIUrl":null,"url":null,"abstract":"A single-switch equalization charger, which is a SEPIC integrated with a series-resonant voltage multiplier, is proposed in this paper. The operation of the SEPIC in the proposed equalization charger is identical to a traditional one, while the series-resonant voltage multiplier is driven by an asymmetrical square voltage wave generated at a switching node in the SEPIC. Most of the total charging power is supplied by the SEPIC, while the series-resonant voltage multiplier provides only a fraction of the charging power to eliminate the voltage imbalance. The proposed single-switch equalization charger not only simplifies the circuitry by reducing the switch count but also the system by combining two components (i.e. a charger and equalizer) into a single unit. An experimental charge-discharge cycling test was performed using a 50-W prototype for four supercapacitor (SC) modules connected in series. The series-connected SCs were mainly charged by the SEPIC while the voltage imbalance was gradually eliminated by the series-resonant voltage multiplier, demonstrating the proposed concept and the equalization performance.","PeriodicalId":301487,"journal":{"name":"2013 IEEE ECCE Asia Downunder","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single-switch equalization charger integrating SEPIC and equalizer using series-resonant voltage multiplier for series-connected energy storage cells/modules\",\"authors\":\"M. Uno, A. Kukita\",\"doi\":\"10.1109/ECCE-ASIA.2013.6579112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single-switch equalization charger, which is a SEPIC integrated with a series-resonant voltage multiplier, is proposed in this paper. The operation of the SEPIC in the proposed equalization charger is identical to a traditional one, while the series-resonant voltage multiplier is driven by an asymmetrical square voltage wave generated at a switching node in the SEPIC. Most of the total charging power is supplied by the SEPIC, while the series-resonant voltage multiplier provides only a fraction of the charging power to eliminate the voltage imbalance. The proposed single-switch equalization charger not only simplifies the circuitry by reducing the switch count but also the system by combining two components (i.e. a charger and equalizer) into a single unit. An experimental charge-discharge cycling test was performed using a 50-W prototype for four supercapacitor (SC) modules connected in series. The series-connected SCs were mainly charged by the SEPIC while the voltage imbalance was gradually eliminated by the series-resonant voltage multiplier, demonstrating the proposed concept and the equalization performance.\",\"PeriodicalId\":301487,\"journal\":{\"name\":\"2013 IEEE ECCE Asia Downunder\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE ECCE Asia Downunder\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE-ASIA.2013.6579112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE ECCE Asia Downunder","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-ASIA.2013.6579112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种单开关均衡充电器,它是一个集成了串联谐振电压倍增器的SEPIC。该均衡充电器中SEPIC的工作原理与传统的SEPIC相同,而串联谐振电压倍增器是由SEPIC中一个开关节点产生的不对称方波驱动的。总的充电功率大部分由SEPIC提供,而串联谐振电压倍增器仅提供一小部分充电功率,以消除电压不平衡。提出的单开关均衡充电器不仅通过减少开关数量来简化电路,而且通过将两个组件(即充电器和均衡器)组合成一个单元来简化系统。采用50w原型机对4个串联超级电容器模块进行了充放电循环实验。串联sc主要由SEPIC充电,而串联谐振电压倍增器逐渐消除了电压不平衡,证明了所提出的概念和均衡性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-switch equalization charger integrating SEPIC and equalizer using series-resonant voltage multiplier for series-connected energy storage cells/modules
A single-switch equalization charger, which is a SEPIC integrated with a series-resonant voltage multiplier, is proposed in this paper. The operation of the SEPIC in the proposed equalization charger is identical to a traditional one, while the series-resonant voltage multiplier is driven by an asymmetrical square voltage wave generated at a switching node in the SEPIC. Most of the total charging power is supplied by the SEPIC, while the series-resonant voltage multiplier provides only a fraction of the charging power to eliminate the voltage imbalance. The proposed single-switch equalization charger not only simplifies the circuitry by reducing the switch count but also the system by combining two components (i.e. a charger and equalizer) into a single unit. An experimental charge-discharge cycling test was performed using a 50-W prototype for four supercapacitor (SC) modules connected in series. The series-connected SCs were mainly charged by the SEPIC while the voltage imbalance was gradually eliminated by the series-resonant voltage multiplier, demonstrating the proposed concept and the equalization performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信