S. Tripakis, Ben Lickly, T. Henzinger, Edward A. Lee
{"title":"关于关系接口","authors":"S. Tripakis, Ben Lickly, T. Henzinger, Edward A. Lee","doi":"10.1145/1629335.1629346","DOIUrl":null,"url":null,"abstract":"In this paper we extend the work of Alfaro, Henzinger et al. on interface theories for component-based design. Existing interface theories often fail to capture functional relations between the inputs and outputs of an interface. For example, a simple synchronous interface that takes as input a number n ≥ 0 and returns, at the same time, as output n + 1, cannot be expressed in existing theories. In this paper we provide a theory of relational interfaces, where such input-output relations can be captured. Our theory supports synchronous interfaces, both stateless and stateful. It includes explicit notions of environments and pluggability, and satisfies fundamental properties such as preservation of refinement by composition, and characterization of pluggability by refinement. We achieve these properties by making reasonable restrictions on feedback loops in interface compositions.","PeriodicalId":143573,"journal":{"name":"International Conference on Embedded Software","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"On relational interfaces\",\"authors\":\"S. Tripakis, Ben Lickly, T. Henzinger, Edward A. Lee\",\"doi\":\"10.1145/1629335.1629346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend the work of Alfaro, Henzinger et al. on interface theories for component-based design. Existing interface theories often fail to capture functional relations between the inputs and outputs of an interface. For example, a simple synchronous interface that takes as input a number n ≥ 0 and returns, at the same time, as output n + 1, cannot be expressed in existing theories. In this paper we provide a theory of relational interfaces, where such input-output relations can be captured. Our theory supports synchronous interfaces, both stateless and stateful. It includes explicit notions of environments and pluggability, and satisfies fundamental properties such as preservation of refinement by composition, and characterization of pluggability by refinement. We achieve these properties by making reasonable restrictions on feedback loops in interface compositions.\",\"PeriodicalId\":143573,\"journal\":{\"name\":\"International Conference on Embedded Software\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Embedded Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629335.1629346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Embedded Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629335.1629346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we extend the work of Alfaro, Henzinger et al. on interface theories for component-based design. Existing interface theories often fail to capture functional relations between the inputs and outputs of an interface. For example, a simple synchronous interface that takes as input a number n ≥ 0 and returns, at the same time, as output n + 1, cannot be expressed in existing theories. In this paper we provide a theory of relational interfaces, where such input-output relations can be captured. Our theory supports synchronous interfaces, both stateless and stateful. It includes explicit notions of environments and pluggability, and satisfies fundamental properties such as preservation of refinement by composition, and characterization of pluggability by refinement. We achieve these properties by making reasonable restrictions on feedback loops in interface compositions.