Rohit C. Philip, Sree Ramya S. P. Malladi, M. Niihori, A. Jacob, Jeffrey J. Rodríguez
{"title":"监督分类器对斑马鱼神经细胞损伤评分的性能研究","authors":"Rohit C. Philip, Sree Ramya S. P. Malladi, M. Niihori, A. Jacob, Jeffrey J. Rodríguez","doi":"10.1109/SSIAI.2018.8470377","DOIUrl":null,"url":null,"abstract":"Supervised machine learning schemes are widely used to perform classification tasks. There is a wide variety of classifiers in use today, such as single- and multi-class support vector machines, k-nearest neighbors, decision trees, random forests, naive Bayes classifiers with or without kernel density estimation, linear discriminant analysis, quadratic discriminant analysis, and numerous neural network architectures. Our prior work used high-level shape, intensity, and texture features as predictors in a single-class support vector machine classifier to classify images of zebrafish neuromasts obtained using confocal microscopy into four discrete damage classes. Here, we analyze the performance of a multitude of supervised classifiers in terms of mean absolute error using these high-level features as predictors. In addition, we also analyze performance while using raw pixel data as predictors.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Supervised Classifiers for Damage Scoring of Zebrafish Neuromasts\",\"authors\":\"Rohit C. Philip, Sree Ramya S. P. Malladi, M. Niihori, A. Jacob, Jeffrey J. Rodríguez\",\"doi\":\"10.1109/SSIAI.2018.8470377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised machine learning schemes are widely used to perform classification tasks. There is a wide variety of classifiers in use today, such as single- and multi-class support vector machines, k-nearest neighbors, decision trees, random forests, naive Bayes classifiers with or without kernel density estimation, linear discriminant analysis, quadratic discriminant analysis, and numerous neural network architectures. Our prior work used high-level shape, intensity, and texture features as predictors in a single-class support vector machine classifier to classify images of zebrafish neuromasts obtained using confocal microscopy into four discrete damage classes. Here, we analyze the performance of a multitude of supervised classifiers in terms of mean absolute error using these high-level features as predictors. In addition, we also analyze performance while using raw pixel data as predictors.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of Supervised Classifiers for Damage Scoring of Zebrafish Neuromasts
Supervised machine learning schemes are widely used to perform classification tasks. There is a wide variety of classifiers in use today, such as single- and multi-class support vector machines, k-nearest neighbors, decision trees, random forests, naive Bayes classifiers with or without kernel density estimation, linear discriminant analysis, quadratic discriminant analysis, and numerous neural network architectures. Our prior work used high-level shape, intensity, and texture features as predictors in a single-class support vector machine classifier to classify images of zebrafish neuromasts obtained using confocal microscopy into four discrete damage classes. Here, we analyze the performance of a multitude of supervised classifiers in terms of mean absolute error using these high-level features as predictors. In addition, we also analyze performance while using raw pixel data as predictors.