{"title":"具有市场力量的电动汽车充电调度的随机模型预测控制","authors":"Arec L. Jamgochian, Mykel J. Kochenderfer","doi":"10.1109/ICCVE45908.2019.8965237","DOIUrl":null,"url":null,"abstract":"With the penetration of electric vehicles in local markets, vehicle-induced electricity demand can cause power grid instability. Collaborative smart charging can help stabilize grid demand and mitigate those issues. This paper formulates charge scheduling when connected vehicles constitute a large portion of instantaneous demand. Allowing coordinated charging to sway electricity price, we formulate a multi-objective stochastic optimization problem to minimize cost while maximizing charge in each car. We model stochastic base electricity demand using a Gaussian Mixture Model (GMM) and solve the certainty-equivalent stochastic optimization problem. We then implement a stochastic model predictive control (SMPC) algorithm and compare performance between a naive policy, a certainty-equivalent optimized policy, and SMPC on a dataset derived from California ISO-serviced demand.","PeriodicalId":384049,"journal":{"name":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","volume":"40 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic Model Predictive Control for Scheduling Charging of Electric Vehicle Fleets with Market Power\",\"authors\":\"Arec L. Jamgochian, Mykel J. Kochenderfer\",\"doi\":\"10.1109/ICCVE45908.2019.8965237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the penetration of electric vehicles in local markets, vehicle-induced electricity demand can cause power grid instability. Collaborative smart charging can help stabilize grid demand and mitigate those issues. This paper formulates charge scheduling when connected vehicles constitute a large portion of instantaneous demand. Allowing coordinated charging to sway electricity price, we formulate a multi-objective stochastic optimization problem to minimize cost while maximizing charge in each car. We model stochastic base electricity demand using a Gaussian Mixture Model (GMM) and solve the certainty-equivalent stochastic optimization problem. We then implement a stochastic model predictive control (SMPC) algorithm and compare performance between a naive policy, a certainty-equivalent optimized policy, and SMPC on a dataset derived from California ISO-serviced demand.\",\"PeriodicalId\":384049,\"journal\":{\"name\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"volume\":\"40 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVE45908.2019.8965237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE45908.2019.8965237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic Model Predictive Control for Scheduling Charging of Electric Vehicle Fleets with Market Power
With the penetration of electric vehicles in local markets, vehicle-induced electricity demand can cause power grid instability. Collaborative smart charging can help stabilize grid demand and mitigate those issues. This paper formulates charge scheduling when connected vehicles constitute a large portion of instantaneous demand. Allowing coordinated charging to sway electricity price, we formulate a multi-objective stochastic optimization problem to minimize cost while maximizing charge in each car. We model stochastic base electricity demand using a Gaussian Mixture Model (GMM) and solve the certainty-equivalent stochastic optimization problem. We then implement a stochastic model predictive control (SMPC) algorithm and compare performance between a naive policy, a certainty-equivalent optimized policy, and SMPC on a dataset derived from California ISO-serviced demand.