具有市场力量的电动汽车充电调度的随机模型预测控制

Arec L. Jamgochian, Mykel J. Kochenderfer
{"title":"具有市场力量的电动汽车充电调度的随机模型预测控制","authors":"Arec L. Jamgochian, Mykel J. Kochenderfer","doi":"10.1109/ICCVE45908.2019.8965237","DOIUrl":null,"url":null,"abstract":"With the penetration of electric vehicles in local markets, vehicle-induced electricity demand can cause power grid instability. Collaborative smart charging can help stabilize grid demand and mitigate those issues. This paper formulates charge scheduling when connected vehicles constitute a large portion of instantaneous demand. Allowing coordinated charging to sway electricity price, we formulate a multi-objective stochastic optimization problem to minimize cost while maximizing charge in each car. We model stochastic base electricity demand using a Gaussian Mixture Model (GMM) and solve the certainty-equivalent stochastic optimization problem. We then implement a stochastic model predictive control (SMPC) algorithm and compare performance between a naive policy, a certainty-equivalent optimized policy, and SMPC on a dataset derived from California ISO-serviced demand.","PeriodicalId":384049,"journal":{"name":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","volume":"40 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic Model Predictive Control for Scheduling Charging of Electric Vehicle Fleets with Market Power\",\"authors\":\"Arec L. Jamgochian, Mykel J. Kochenderfer\",\"doi\":\"10.1109/ICCVE45908.2019.8965237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the penetration of electric vehicles in local markets, vehicle-induced electricity demand can cause power grid instability. Collaborative smart charging can help stabilize grid demand and mitigate those issues. This paper formulates charge scheduling when connected vehicles constitute a large portion of instantaneous demand. Allowing coordinated charging to sway electricity price, we formulate a multi-objective stochastic optimization problem to minimize cost while maximizing charge in each car. We model stochastic base electricity demand using a Gaussian Mixture Model (GMM) and solve the certainty-equivalent stochastic optimization problem. We then implement a stochastic model predictive control (SMPC) algorithm and compare performance between a naive policy, a certainty-equivalent optimized policy, and SMPC on a dataset derived from California ISO-serviced demand.\",\"PeriodicalId\":384049,\"journal\":{\"name\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"volume\":\"40 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVE45908.2019.8965237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE45908.2019.8965237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着电动汽车在当地市场的渗透,汽车引发的电力需求可能会导致电网不稳定。协同智能充电可以帮助稳定电网需求并缓解这些问题。本文给出了当联网车辆占瞬时需求的很大一部分时的充电计划。考虑协调充电对电价的影响,提出了以成本最小化、每辆车充电量最大化为目标的多目标随机优化问题。本文采用高斯混合模型(GMM)对随机基础电力需求进行建模,求解了确定性等效随机优化问题。然后,我们实现了一个随机模型预测控制(SMPC)算法,并比较了朴素策略、确定性等效优化策略和SMPC在加利福尼亚iso服务需求数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Model Predictive Control for Scheduling Charging of Electric Vehicle Fleets with Market Power
With the penetration of electric vehicles in local markets, vehicle-induced electricity demand can cause power grid instability. Collaborative smart charging can help stabilize grid demand and mitigate those issues. This paper formulates charge scheduling when connected vehicles constitute a large portion of instantaneous demand. Allowing coordinated charging to sway electricity price, we formulate a multi-objective stochastic optimization problem to minimize cost while maximizing charge in each car. We model stochastic base electricity demand using a Gaussian Mixture Model (GMM) and solve the certainty-equivalent stochastic optimization problem. We then implement a stochastic model predictive control (SMPC) algorithm and compare performance between a naive policy, a certainty-equivalent optimized policy, and SMPC on a dataset derived from California ISO-serviced demand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信