{"title":"𝐴_{𝑛}仿射grassmannian型的相干ic -束和仿射型的二元正则基","authors":"M. Finkelberg, Ryo Fujita","doi":"10.1090/ERT/558","DOIUrl":null,"url":null,"abstract":"The convolution ring $K^{GL_n(\\mathcal{O})\\rtimes\\mathbb{C}^\\times}(\\mathrm{Gr}_{GL_n})$ was identified with a quantum unipotent cell of the loop group $LSL_2$ in [Cautis-Williams, arXiv:1801.08111]. We identify the basis formed by the classes of irreducible equivariant perverse coherent sheaves with the dual canonical basis of the quantum unipotent cell.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coherent IC-sheaves on type 𝐴_{𝑛} affine Grassmannians and dual canonical basis of affine type 𝐴₁\",\"authors\":\"M. Finkelberg, Ryo Fujita\",\"doi\":\"10.1090/ERT/558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convolution ring $K^{GL_n(\\\\mathcal{O})\\\\rtimes\\\\mathbb{C}^\\\\times}(\\\\mathrm{Gr}_{GL_n})$ was identified with a quantum unipotent cell of the loop group $LSL_2$ in [Cautis-Williams, arXiv:1801.08111]. We identify the basis formed by the classes of irreducible equivariant perverse coherent sheaves with the dual canonical basis of the quantum unipotent cell.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/ERT/558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/ERT/558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coherent IC-sheaves on type 𝐴_{𝑛} affine Grassmannians and dual canonical basis of affine type 𝐴₁
The convolution ring $K^{GL_n(\mathcal{O})\rtimes\mathbb{C}^\times}(\mathrm{Gr}_{GL_n})$ was identified with a quantum unipotent cell of the loop group $LSL_2$ in [Cautis-Williams, arXiv:1801.08111]. We identify the basis formed by the classes of irreducible equivariant perverse coherent sheaves with the dual canonical basis of the quantum unipotent cell.