光学相干断层扫描(OCT)图像横向分辨率的提高

Evgenia Bousi, C. Pitris
{"title":"光学相干断层扫描(OCT)图像横向分辨率的提高","authors":"Evgenia Bousi, C. Pitris","doi":"10.1109/BIBE.2012.6399740","DOIUrl":null,"url":null,"abstract":"A novel method for lateral resolution improvement of Optical Coherence Tomography (OCT) images, which is independent of the focusing of the delivery optics and the depth of field, is presented. This method was inspired by radar range oversampling techniques. It is based on the lateral oversampling of the image and the estimation of the locations of the multiple scatterers which contribute to the signal. The information in the oversampled images is used to estimate the locations of multiple scatterers assuming each contributes a weighted portion to the detected signal, the weight determined by the location of the scatterer and the point spread function (PSF) of the system. A priori knowledge of the PSF is not required since optimization techniques can be employed to achieve the best possible enhancement of the image resolution. Preliminary results of such an approach on laterally oversampled OCT images have shown that it is possible to achieve a two-fold lateral resolution improvement. Moreover by performing deconvolution with the new improved PSF the lateral resolution can be further improved by another factor of two for a total of 4x improvement. Such improvement can be significant, especially in cases where the Numerical Aperture (NA) of the delivery optics is limited, such as, for example, in the case of ophthalmic imaging where the optics of the eye itself limit the lateral resolution.","PeriodicalId":330164,"journal":{"name":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lateral resolution improvement in Optical Coherence Tomography (OCT) images\",\"authors\":\"Evgenia Bousi, C. Pitris\",\"doi\":\"10.1109/BIBE.2012.6399740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method for lateral resolution improvement of Optical Coherence Tomography (OCT) images, which is independent of the focusing of the delivery optics and the depth of field, is presented. This method was inspired by radar range oversampling techniques. It is based on the lateral oversampling of the image and the estimation of the locations of the multiple scatterers which contribute to the signal. The information in the oversampled images is used to estimate the locations of multiple scatterers assuming each contributes a weighted portion to the detected signal, the weight determined by the location of the scatterer and the point spread function (PSF) of the system. A priori knowledge of the PSF is not required since optimization techniques can be employed to achieve the best possible enhancement of the image resolution. Preliminary results of such an approach on laterally oversampled OCT images have shown that it is possible to achieve a two-fold lateral resolution improvement. Moreover by performing deconvolution with the new improved PSF the lateral resolution can be further improved by another factor of two for a total of 4x improvement. Such improvement can be significant, especially in cases where the Numerical Aperture (NA) of the delivery optics is limited, such as, for example, in the case of ophthalmic imaging where the optics of the eye itself limit the lateral resolution.\",\"PeriodicalId\":330164,\"journal\":{\"name\":\"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2012.6399740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2012.6399740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种不依赖于传递光学元件聚焦和景深的光学相干层析成像(OCT)横向分辨率提高方法。该方法受雷达距离过采样技术的启发。它基于图像的横向过采样和对构成信号的多个散射体的位置的估计。过采样图像中的信息被用来估计多个散射体的位置,假设每个散射体对检测信号贡献一个加权部分,权重由散射体的位置和系统的点扩展函数(PSF)决定。不需要先验的PSF知识,因为优化技术可以用来实现图像分辨率的最佳增强。这种方法在横向过采样OCT图像上的初步结果表明,它有可能实现两倍的横向分辨率改进。此外,通过使用新的改进的PSF进行反卷积,横向分辨率可以进一步提高两倍,总共提高4倍。这种改进可能是显著的,特别是在传输光学元件的数值孔径(NA)有限的情况下,例如,在眼科成像的情况下,眼睛的光学元件本身限制了横向分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lateral resolution improvement in Optical Coherence Tomography (OCT) images
A novel method for lateral resolution improvement of Optical Coherence Tomography (OCT) images, which is independent of the focusing of the delivery optics and the depth of field, is presented. This method was inspired by radar range oversampling techniques. It is based on the lateral oversampling of the image and the estimation of the locations of the multiple scatterers which contribute to the signal. The information in the oversampled images is used to estimate the locations of multiple scatterers assuming each contributes a weighted portion to the detected signal, the weight determined by the location of the scatterer and the point spread function (PSF) of the system. A priori knowledge of the PSF is not required since optimization techniques can be employed to achieve the best possible enhancement of the image resolution. Preliminary results of such an approach on laterally oversampled OCT images have shown that it is possible to achieve a two-fold lateral resolution improvement. Moreover by performing deconvolution with the new improved PSF the lateral resolution can be further improved by another factor of two for a total of 4x improvement. Such improvement can be significant, especially in cases where the Numerical Aperture (NA) of the delivery optics is limited, such as, for example, in the case of ophthalmic imaging where the optics of the eye itself limit the lateral resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信