客户不耐烦、碰撞和服务器不可靠的重审排队系统M/M/1的渐近分析

E. Danilyuk, S. Moiseeva, J. Sztrik, Елена Ю. Данилюк, Светлана П. Моисеева, Янош Стрик
{"title":"客户不耐烦、碰撞和服务器不可靠的重审排队系统M/M/1的渐近分析","authors":"E. Danilyuk, S. Moiseeva, J. Sztrik, Елена Ю. Данилюк, Светлана П. Моисеева, Янош Стрик","doi":"10.17516/1997-1397-2020-13-2-218-230","DOIUrl":null,"url":null,"abstract":"Abstract. The retrial queueing system of M/M/1 type with Poisson flow of arrivals, impatient customers, collisions and unreliable service device is considered in the paper. The novelty of our contribution is the inclusion of breakdowns and repairs of the service into our previous study to make the problem more realistic and hence more complicated. Retrial time of customers in the orbit, service time, impatience time of customers in the orbit, server lifetime (depending on whether it is idle or busy) and server recovery time are supposed to be exponentially distributed. An asymptotic analysis method is used to find the stationary distribution of the number of customers in the orbit. The heavy load of the system and long time patience of customers in the orbit are proposed as asymptotic conditions. Theorem about the Gaussian form of the asymptotic probability distribution of the number of customers in the orbit is formulated and proved. Numerical examples are given to show the accuracy and the area of feasibility of the proposed method.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Asymptotic Analysis of Retrial Queueing System M/M/1 with Impatient Customers, Collisions and Unreliable Server\",\"authors\":\"E. Danilyuk, S. Moiseeva, J. Sztrik, Елена Ю. Данилюк, Светлана П. Моисеева, Янош Стрик\",\"doi\":\"10.17516/1997-1397-2020-13-2-218-230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The retrial queueing system of M/M/1 type with Poisson flow of arrivals, impatient customers, collisions and unreliable service device is considered in the paper. The novelty of our contribution is the inclusion of breakdowns and repairs of the service into our previous study to make the problem more realistic and hence more complicated. Retrial time of customers in the orbit, service time, impatience time of customers in the orbit, server lifetime (depending on whether it is idle or busy) and server recovery time are supposed to be exponentially distributed. An asymptotic analysis method is used to find the stationary distribution of the number of customers in the orbit. The heavy load of the system and long time patience of customers in the orbit are proposed as asymptotic conditions. Theorem about the Gaussian form of the asymptotic probability distribution of the number of customers in the orbit is formulated and proved. Numerical examples are given to show the accuracy and the area of feasibility of the proposed method.\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-2-218-230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-2-218-230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

摘要本文研究了具有泊松流到达、顾客不耐烦、碰撞和服务装置不可靠的M/M/1型重审排队系统。我们的贡献的新颖之处在于将服务的故障和维修纳入我们之前的研究中,使问题更加现实,从而更加复杂。假定在轨客户的重试时间、服务时间、在轨客户的不耐烦时间、服务器生命周期(取决于是空闲还是繁忙)和服务器恢复时间呈指数分布。用渐近分析方法求出客户数量在轨道上的平稳分布。提出了系统的大负荷和用户在轨道上的长时间耐心作为渐近条件。推导并证明了轨道上顾客数量渐近概率分布的高斯形式定理。数值算例表明了该方法的精度和适用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Analysis of Retrial Queueing System M/M/1 with Impatient Customers, Collisions and Unreliable Server
Abstract. The retrial queueing system of M/M/1 type with Poisson flow of arrivals, impatient customers, collisions and unreliable service device is considered in the paper. The novelty of our contribution is the inclusion of breakdowns and repairs of the service into our previous study to make the problem more realistic and hence more complicated. Retrial time of customers in the orbit, service time, impatience time of customers in the orbit, server lifetime (depending on whether it is idle or busy) and server recovery time are supposed to be exponentially distributed. An asymptotic analysis method is used to find the stationary distribution of the number of customers in the orbit. The heavy load of the system and long time patience of customers in the orbit are proposed as asymptotic conditions. Theorem about the Gaussian form of the asymptotic probability distribution of the number of customers in the orbit is formulated and proved. Numerical examples are given to show the accuracy and the area of feasibility of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信