{"title":"对偶参数化的图基问题","authors":"G. Fertin, Christian Komusiewicz","doi":"10.4230/LIPIcs.CPM.2016.7","DOIUrl":null,"url":null,"abstract":"Let G=(V,E) be a vertex-colored graph, where C is the set of colors used to color V. The Graph Motif (or GM) problem takes as input G, a multiset M of colors built from C, and asks whether there is a subset S subseteq V such that (i) G[S] is connected and (ii) the multiset of colors obtained from S equals M. The Colorful Graph Motif problem (or CGM) is a constrained version of GM in which M=C, and the List-Colored Graph Motif problem (or LGM) is the extension of GM in which each vertex v of V may choose its color from a list L(v) of colors. \n \nWe study the three problems GM, CGM and LGM, parameterized by l:=|V|-|M|. In particular, for general graphs, we show that, assuming the strong exponential-time hypothesis, CGM has no (2-epsilon)^l * |V|^{O(1)}-time algorithm, which implies that a previous algorithm, running in O(2^l\\cdot |E|) time is optimal. We also prove that LGM is W[1]-hard even if we restrict ourselves to lists of at most two colors. If we constrain the input graph to be a tree, then we show that, in contrast to CGM, GM can be solved in O(4^l *|V|) time but admits no polynomial kernel, while CGM can be solved in O(sqrt{2}^l + |V|) time and admits a polynomial kernel.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Graph Motif Problems Parameterized by Dual\",\"authors\":\"G. Fertin, Christian Komusiewicz\",\"doi\":\"10.4230/LIPIcs.CPM.2016.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G=(V,E) be a vertex-colored graph, where C is the set of colors used to color V. The Graph Motif (or GM) problem takes as input G, a multiset M of colors built from C, and asks whether there is a subset S subseteq V such that (i) G[S] is connected and (ii) the multiset of colors obtained from S equals M. The Colorful Graph Motif problem (or CGM) is a constrained version of GM in which M=C, and the List-Colored Graph Motif problem (or LGM) is the extension of GM in which each vertex v of V may choose its color from a list L(v) of colors. \\n \\nWe study the three problems GM, CGM and LGM, parameterized by l:=|V|-|M|. In particular, for general graphs, we show that, assuming the strong exponential-time hypothesis, CGM has no (2-epsilon)^l * |V|^{O(1)}-time algorithm, which implies that a previous algorithm, running in O(2^l\\\\cdot |E|) time is optimal. We also prove that LGM is W[1]-hard even if we restrict ourselves to lists of at most two colors. If we constrain the input graph to be a tree, then we show that, in contrast to CGM, GM can be solved in O(4^l *|V|) time but admits no polynomial kernel, while CGM can be solved in O(sqrt{2}^l + |V|) time and admits a polynomial kernel.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2016.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2016.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let G=(V,E) be a vertex-colored graph, where C is the set of colors used to color V. The Graph Motif (or GM) problem takes as input G, a multiset M of colors built from C, and asks whether there is a subset S subseteq V such that (i) G[S] is connected and (ii) the multiset of colors obtained from S equals M. The Colorful Graph Motif problem (or CGM) is a constrained version of GM in which M=C, and the List-Colored Graph Motif problem (or LGM) is the extension of GM in which each vertex v of V may choose its color from a list L(v) of colors.
We study the three problems GM, CGM and LGM, parameterized by l:=|V|-|M|. In particular, for general graphs, we show that, assuming the strong exponential-time hypothesis, CGM has no (2-epsilon)^l * |V|^{O(1)}-time algorithm, which implies that a previous algorithm, running in O(2^l\cdot |E|) time is optimal. We also prove that LGM is W[1]-hard even if we restrict ourselves to lists of at most two colors. If we constrain the input graph to be a tree, then we show that, in contrast to CGM, GM can be solved in O(4^l *|V|) time but admits no polynomial kernel, while CGM can be solved in O(sqrt{2}^l + |V|) time and admits a polynomial kernel.