预测UPC应用程序中的远程重用距离模式

Steven Vormwald, Wei Wang, S. Carr, S. Seidel, Z. Wang
{"title":"预测UPC应用程序中的远程重用距离模式","authors":"Steven Vormwald, Wei Wang, S. Carr, S. Seidel, Z. Wang","doi":"10.1145/2020373.2020374","DOIUrl":null,"url":null,"abstract":"Current work in high productivity parallel computing has focused attention on the class of partitioned global address space (PGAS) parallel programming languages because they promise to reduce the effort required to develop parallel application codes. An important aspect in achieving good performance in PGAS languages is effective handling of remote memory references. We extend a single-threaded reuse distance model to predict memory behavior for multi-threaded UPC applications. Our model handles changes in per-thread data size as well as changes in thread mapping due to problem size increases. Our results indicate the model provides good predictions of remote memory behavior by accurately predicting changes in remote memory reuse distance as a function of the problem size and the number of threads.","PeriodicalId":245693,"journal":{"name":"International Conference on Partitioned Global Address Space Programming Models","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting remote reuse distance patterns in UPC applications\",\"authors\":\"Steven Vormwald, Wei Wang, S. Carr, S. Seidel, Z. Wang\",\"doi\":\"10.1145/2020373.2020374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current work in high productivity parallel computing has focused attention on the class of partitioned global address space (PGAS) parallel programming languages because they promise to reduce the effort required to develop parallel application codes. An important aspect in achieving good performance in PGAS languages is effective handling of remote memory references. We extend a single-threaded reuse distance model to predict memory behavior for multi-threaded UPC applications. Our model handles changes in per-thread data size as well as changes in thread mapping due to problem size increases. Our results indicate the model provides good predictions of remote memory behavior by accurately predicting changes in remote memory reuse distance as a function of the problem size and the number of threads.\",\"PeriodicalId\":245693,\"journal\":{\"name\":\"International Conference on Partitioned Global Address Space Programming Models\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Partitioned Global Address Space Programming Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2020373.2020374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Partitioned Global Address Space Programming Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2020373.2020374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前在高生产率并行计算方面的工作主要集中在分区全局地址空间(PGAS)并行编程语言上,因为它们承诺减少开发并行应用程序代码所需的工作量。在PGAS语言中实现良好性能的一个重要方面是有效地处理远程内存引用。我们扩展了单线程重用距离模型来预测多线程UPC应用程序的内存行为。我们的模型处理每个线程数据大小的变化,以及由于问题大小增加而导致的线程映射的变化。我们的结果表明,该模型通过准确地预测远程内存重用距离作为问题大小和线程数量的函数的变化,提供了对远程内存行为的良好预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting remote reuse distance patterns in UPC applications
Current work in high productivity parallel computing has focused attention on the class of partitioned global address space (PGAS) parallel programming languages because they promise to reduce the effort required to develop parallel application codes. An important aspect in achieving good performance in PGAS languages is effective handling of remote memory references. We extend a single-threaded reuse distance model to predict memory behavior for multi-threaded UPC applications. Our model handles changes in per-thread data size as well as changes in thread mapping due to problem size increases. Our results indicate the model provides good predictions of remote memory behavior by accurately predicting changes in remote memory reuse distance as a function of the problem size and the number of threads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信