Keyan Wang, Chong Xie, K. Du, Chengxin Li, Xianqing Yin
{"title":"一种新型可旋转内表面激光熔覆方法","authors":"Keyan Wang, Chong Xie, K. Du, Chengxin Li, Xianqing Yin","doi":"10.1117/12.2604682","DOIUrl":null,"url":null,"abstract":"Inner-surface laser cladding method has great potential on industry communities. A novel RILC (Rotatable Inner-surface Laser Cladding) equipment was developed to prepare inner-surface cladding layer for heavy or asymmetric work piece. Wear resistance cladding layer was prepared onto the inner-surface of aluminum cylinder by RILC method. The cladding layer greatly increased the hardness of inner-surface, and exhibited high wear resistance and relatively low friction coefficient based on pin-on-disk wear test. Thermocouples were applied to study the thermal cycling of the substrate during cladding process.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"58 31","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel rotatable inner-surface laser cladding method\",\"authors\":\"Keyan Wang, Chong Xie, K. Du, Chengxin Li, Xianqing Yin\",\"doi\":\"10.1117/12.2604682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inner-surface laser cladding method has great potential on industry communities. A novel RILC (Rotatable Inner-surface Laser Cladding) equipment was developed to prepare inner-surface cladding layer for heavy or asymmetric work piece. Wear resistance cladding layer was prepared onto the inner-surface of aluminum cylinder by RILC method. The cladding layer greatly increased the hardness of inner-surface, and exhibited high wear resistance and relatively low friction coefficient based on pin-on-disk wear test. Thermocouples were applied to study the thermal cycling of the substrate during cladding process.\",\"PeriodicalId\":236529,\"journal\":{\"name\":\"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)\",\"volume\":\"58 31\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2604682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel rotatable inner-surface laser cladding method
Inner-surface laser cladding method has great potential on industry communities. A novel RILC (Rotatable Inner-surface Laser Cladding) equipment was developed to prepare inner-surface cladding layer for heavy or asymmetric work piece. Wear resistance cladding layer was prepared onto the inner-surface of aluminum cylinder by RILC method. The cladding layer greatly increased the hardness of inner-surface, and exhibited high wear resistance and relatively low friction coefficient based on pin-on-disk wear test. Thermocouples were applied to study the thermal cycling of the substrate during cladding process.