基于MEMS的HIV检测微流控系统

A. Ganesan, D. Kishore Kumar, Anomitra Banerjee, S. Swaminathan
{"title":"基于MEMS的HIV检测微流控系统","authors":"A. Ganesan, D. Kishore Kumar, Anomitra Banerjee, S. Swaminathan","doi":"10.1109/NANO.2013.6721005","DOIUrl":null,"url":null,"abstract":"ART guidelines of World Health Organization recommend a series of tests for HIV diagnostics (HIV antibody test, CD4 cell count and HIV viral load count). There are several modern technologies that are available to ensure reliable HIV diagnosis employing various principles. However, there is a need for point-of-care system that will eliminate the requirement of the patient to visit a hospital for initial diagnosis. In this paper, a novel design and analysis of MEMS based microfluidic chip facilitating point-of-care diagnostics is presented. The chip is based on the CD4 T+ cell count in blood. The device involves an array of silicon micro-needles each of length 250 microns, that would remove blood directly from the veins and feed it to a silicon micro-channel with alternating constrictions. These constrictions are coated with anti-CD4 Ab molecules to selectively adsorb CD4 T+ cells. An alternating current (AC) impedometric method is then used for discrimination and enumeration of these immobilized cells. The results strongly indicate the reliability of low-cost point of care diagnostics for HIV diagnosis.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MEMS based microfluidic system for HIV detection\",\"authors\":\"A. Ganesan, D. Kishore Kumar, Anomitra Banerjee, S. Swaminathan\",\"doi\":\"10.1109/NANO.2013.6721005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ART guidelines of World Health Organization recommend a series of tests for HIV diagnostics (HIV antibody test, CD4 cell count and HIV viral load count). There are several modern technologies that are available to ensure reliable HIV diagnosis employing various principles. However, there is a need for point-of-care system that will eliminate the requirement of the patient to visit a hospital for initial diagnosis. In this paper, a novel design and analysis of MEMS based microfluidic chip facilitating point-of-care diagnostics is presented. The chip is based on the CD4 T+ cell count in blood. The device involves an array of silicon micro-needles each of length 250 microns, that would remove blood directly from the veins and feed it to a silicon micro-channel with alternating constrictions. These constrictions are coated with anti-CD4 Ab molecules to selectively adsorb CD4 T+ cells. An alternating current (AC) impedometric method is then used for discrimination and enumeration of these immobilized cells. The results strongly indicate the reliability of low-cost point of care diagnostics for HIV diagnosis.\",\"PeriodicalId\":189707,\"journal\":{\"name\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2013.6721005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6721005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

世界卫生组织的抗逆转录病毒治疗指南建议进行一系列艾滋病毒诊断测试(艾滋病毒抗体测试、CD4细胞计数和艾滋病毒载量计数)。有几种现代技术可确保采用各种原则进行可靠的艾滋病毒诊断。然而,需要一种即时护理系统,这将消除患者前往医院进行初步诊断的要求。本文提出了一种新的基于MEMS的微流控芯片的设计和分析,以促进即时诊断。该芯片基于血液中的CD4 T+细胞计数。该装置包括一组长度为250微米的硅微针,可以直接从静脉中抽出血液,并将其输送到交替收缩的硅微通道中。这些收缩包被抗CD4 Ab分子,选择性吸附CD4 T+细胞。然后使用交流阻抗法对这些固定细胞进行鉴别和计数。结果强烈表明低成本的护理点诊断对HIV诊断的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEMS based microfluidic system for HIV detection
ART guidelines of World Health Organization recommend a series of tests for HIV diagnostics (HIV antibody test, CD4 cell count and HIV viral load count). There are several modern technologies that are available to ensure reliable HIV diagnosis employing various principles. However, there is a need for point-of-care system that will eliminate the requirement of the patient to visit a hospital for initial diagnosis. In this paper, a novel design and analysis of MEMS based microfluidic chip facilitating point-of-care diagnostics is presented. The chip is based on the CD4 T+ cell count in blood. The device involves an array of silicon micro-needles each of length 250 microns, that would remove blood directly from the veins and feed it to a silicon micro-channel with alternating constrictions. These constrictions are coated with anti-CD4 Ab molecules to selectively adsorb CD4 T+ cells. An alternating current (AC) impedometric method is then used for discrimination and enumeration of these immobilized cells. The results strongly indicate the reliability of low-cost point of care diagnostics for HIV diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信