两种自动音乐类型识别系统:它们真正识别的是什么?

MIRUM '12 Pub Date : 2012-11-02 DOI:10.1145/2390848.2390866
Bob L. Sturm
{"title":"两种自动音乐类型识别系统:它们真正识别的是什么?","authors":"Bob L. Sturm","doi":"10.1145/2390848.2390866","DOIUrl":null,"url":null,"abstract":"We re-implement two state-of-the-art systems for music genre recognition, and closely examine their behavior. First, we find specific excerpts each system consistently and persistently mislabels. Second, we test the robustness of each system to spectral adjustments to audio signals. Finally, we expose the internal genre models of each system by testing if human can recognize the genres of music excerpts composed by each system to be highly genre-representative. Our results suggest that, though they have high mean classification accuracies, neither system is recognizing music genre.","PeriodicalId":199844,"journal":{"name":"MIRUM '12","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Two systems for automatic music genre recognition: what are they really recognizing?\",\"authors\":\"Bob L. Sturm\",\"doi\":\"10.1145/2390848.2390866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We re-implement two state-of-the-art systems for music genre recognition, and closely examine their behavior. First, we find specific excerpts each system consistently and persistently mislabels. Second, we test the robustness of each system to spectral adjustments to audio signals. Finally, we expose the internal genre models of each system by testing if human can recognize the genres of music excerpts composed by each system to be highly genre-representative. Our results suggest that, though they have high mean classification accuracies, neither system is recognizing music genre.\",\"PeriodicalId\":199844,\"journal\":{\"name\":\"MIRUM '12\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MIRUM '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390848.2390866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MIRUM '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390848.2390866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

我们重新实现了两个最先进的音乐类型识别系统,并仔细检查了它们的行为。首先,我们发现特定的摘录,每个系统始终如一地错误标记。其次,我们测试了每个系统对音频信号的频谱调整的鲁棒性。最后,我们通过测试人类是否能够识别出由每个系统组成的具有高度类型代表性的音乐片段的类型,从而揭示了每个系统的内部类型模型。我们的结果表明,虽然他们有很高的平均分类精度,但两个系统都不能识别音乐类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two systems for automatic music genre recognition: what are they really recognizing?
We re-implement two state-of-the-art systems for music genre recognition, and closely examine their behavior. First, we find specific excerpts each system consistently and persistently mislabels. Second, we test the robustness of each system to spectral adjustments to audio signals. Finally, we expose the internal genre models of each system by testing if human can recognize the genres of music excerpts composed by each system to be highly genre-representative. Our results suggest that, though they have high mean classification accuracies, neither system is recognizing music genre.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信