基于实例和文本的论证机器学习

M. Mozina, C. Giuliano, I. Bratko
{"title":"基于实例和文本的论证机器学习","authors":"M. Mozina, C. Giuliano, I. Bratko","doi":"10.1109/ACIIDS.2009.60","DOIUrl":null,"url":null,"abstract":"We introduce a novel approach to cross-media learning based on argument based machine learning (ABML). ABML is a recent method that combines argumentation and machine learning from examples, and its main idea is to use arguments for some of the learning examples. Arguments are usually provided by a domain expert. In this paper, we present an alternative approach, where arguments used in ABML are automatically extracted from text with a technique for relation extraction. We demonstrate and evaluate the approach through a case study of learning to classify animals by using arguments automatically extracted from Wikipedia.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Argument Based Machine Learning from Examples and Text\",\"authors\":\"M. Mozina, C. Giuliano, I. Bratko\",\"doi\":\"10.1109/ACIIDS.2009.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel approach to cross-media learning based on argument based machine learning (ABML). ABML is a recent method that combines argumentation and machine learning from examples, and its main idea is to use arguments for some of the learning examples. Arguments are usually provided by a domain expert. In this paper, we present an alternative approach, where arguments used in ABML are automatically extracted from text with a technique for relation extraction. We demonstrate and evaluate the approach through a case study of learning to classify animals by using arguments automatically extracted from Wikipedia.\",\"PeriodicalId\":275776,\"journal\":{\"name\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIDS.2009.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们介绍了一种基于基于参数的机器学习(ABML)的跨媒体学习方法。ABML是一种结合论证和机器学习实例的新方法,其主要思想是对一些学习实例使用论证。参数通常由领域专家提供。在本文中,我们提出了一种替代方法,其中ABML中使用的参数通过关系提取技术自动从文本中提取。我们通过使用从维基百科中自动提取的参数来学习对动物进行分类的案例研究来演示和评估这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Argument Based Machine Learning from Examples and Text
We introduce a novel approach to cross-media learning based on argument based machine learning (ABML). ABML is a recent method that combines argumentation and machine learning from examples, and its main idea is to use arguments for some of the learning examples. Arguments are usually provided by a domain expert. In this paper, we present an alternative approach, where arguments used in ABML are automatically extracted from text with a technique for relation extraction. We demonstrate and evaluate the approach through a case study of learning to classify animals by using arguments automatically extracted from Wikipedia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信