基于NOMA的认知无线网络切片资源分配技术

Yong Zhang, Siyu Yuan, Lizi Hu, W. Qie, Da Guo
{"title":"基于NOMA的认知无线网络切片资源分配技术","authors":"Yong Zhang, Siyu Yuan, Lizi Hu, W. Qie, Da Guo","doi":"10.1109/ICECE54449.2021.9674344","DOIUrl":null,"url":null,"abstract":"With the integration of industrialization and informatization, the contradiction between radio supply and demand has become increasingly prominent. To improve the utilization of spectrum resources, it is necessary to use cognitive radio technology and NOMA (NON Othogonal Multiple Access) technology. In this paper, we propose a multi-agent reinforcement learning algorithm by combining graph convolutional neural network and DQN (Deep Q Network) algorithm, which is suitable for cognitive NOMA network slice resource allocation scenario. Simulation results show that the algorithm can improve the convergence value and convergence speed.","PeriodicalId":166178,"journal":{"name":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slice Resource Allocation Technology of Cognitive Wireless Network Based on NOMA\",\"authors\":\"Yong Zhang, Siyu Yuan, Lizi Hu, W. Qie, Da Guo\",\"doi\":\"10.1109/ICECE54449.2021.9674344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the integration of industrialization and informatization, the contradiction between radio supply and demand has become increasingly prominent. To improve the utilization of spectrum resources, it is necessary to use cognitive radio technology and NOMA (NON Othogonal Multiple Access) technology. In this paper, we propose a multi-agent reinforcement learning algorithm by combining graph convolutional neural network and DQN (Deep Q Network) algorithm, which is suitable for cognitive NOMA network slice resource allocation scenario. Simulation results show that the algorithm can improve the convergence value and convergence speed.\",\"PeriodicalId\":166178,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE54449.2021.9674344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE54449.2021.9674344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着工业化和信息化的融合,无线电供需矛盾日益突出。为了提高频谱资源的利用率,有必要采用认知无线电技术和NOMA (NON Othogonal Multiple Access)技术。本文提出了一种将图卷积神经网络与DQN (Deep Q network)算法相结合的多智能体强化学习算法,该算法适用于认知NOMA网络片资源分配场景。仿真结果表明,该算法可以提高收敛值和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slice Resource Allocation Technology of Cognitive Wireless Network Based on NOMA
With the integration of industrialization and informatization, the contradiction between radio supply and demand has become increasingly prominent. To improve the utilization of spectrum resources, it is necessary to use cognitive radio technology and NOMA (NON Othogonal Multiple Access) technology. In this paper, we propose a multi-agent reinforcement learning algorithm by combining graph convolutional neural network and DQN (Deep Q Network) algorithm, which is suitable for cognitive NOMA network slice resource allocation scenario. Simulation results show that the algorithm can improve the convergence value and convergence speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信