R Macfarlane, M A Moskowitz, E Tasdemiroglu, E P Wei, H A Kontos
{"title":"脑缺血后血流和神经效应机制。","authors":"R Macfarlane, M A Moskowitz, E Tasdemiroglu, E P Wei, H A Kontos","doi":"10.1159/000158842","DOIUrl":null,"url":null,"abstract":"<p><p>The influence of neuroeffector mechanisms in the regulation of postischemic cerebral blood flow was investigated by microsphere determination in 8 cats after chronic unilateral vascular deafferentation by trigeminal ganglionectomy. The animals were subjected to 90 min of reperfusion following 10 min of global ischemia induced by 4-vessel occlusion and systemic hypotension. Cortical hyperemia 30 min after reperfusion was attenuated by up to 48% in cortical gray matter ipsilateral to the side of trigeminal ganglionectomy (p less than 0.01). Axon reflex mechanisms involving the release of neuropeptides from peripheral sensory nerve fibers, such as substance P (SP), calcitonin gene-related peptide (CGRP) and neurokinin A (NKA), mediate this response. SP and NKA cause vasodilation by endothelium-dependent mechanisms (endothelium-dependent relaxing factor), whereas CGRP relaxes vascular smooth muscle by direct receptor interactions. Studies were therefore undertaken to determine the extent to which endothelium-dependent mechanisms mediate the hyperemia following global cerebral ischemia. In 7 intact cats, the postischemic response of pial arterioles to the topical application of acetylcholine (ACh; 10(-7) M), an endothelial-dependent vasodilator, was measured using a closed cranial window technique. Although ACh increased pial arteriolar caliber by 17% under resting conditions, the same dose elicited a vasoconstrictor response (87% of pre-ACh diameter 30 min after reperfusion) for the first 60 min of reperfusion after 10 min of ischemia. ACh-induced vasodilation was restored by 75 min (105%), but was less than control even at 120 min (109 vs. 117%; p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":9009,"journal":{"name":"Blood vessels","volume":"28 1-3","pages":"46-51"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000158842","citationCount":"25","resultStr":"{\"title\":\"Postischemic cerebral blood flow and neuroeffector mechanisms.\",\"authors\":\"R Macfarlane, M A Moskowitz, E Tasdemiroglu, E P Wei, H A Kontos\",\"doi\":\"10.1159/000158842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The influence of neuroeffector mechanisms in the regulation of postischemic cerebral blood flow was investigated by microsphere determination in 8 cats after chronic unilateral vascular deafferentation by trigeminal ganglionectomy. The animals were subjected to 90 min of reperfusion following 10 min of global ischemia induced by 4-vessel occlusion and systemic hypotension. Cortical hyperemia 30 min after reperfusion was attenuated by up to 48% in cortical gray matter ipsilateral to the side of trigeminal ganglionectomy (p less than 0.01). Axon reflex mechanisms involving the release of neuropeptides from peripheral sensory nerve fibers, such as substance P (SP), calcitonin gene-related peptide (CGRP) and neurokinin A (NKA), mediate this response. SP and NKA cause vasodilation by endothelium-dependent mechanisms (endothelium-dependent relaxing factor), whereas CGRP relaxes vascular smooth muscle by direct receptor interactions. Studies were therefore undertaken to determine the extent to which endothelium-dependent mechanisms mediate the hyperemia following global cerebral ischemia. In 7 intact cats, the postischemic response of pial arterioles to the topical application of acetylcholine (ACh; 10(-7) M), an endothelial-dependent vasodilator, was measured using a closed cranial window technique. Although ACh increased pial arteriolar caliber by 17% under resting conditions, the same dose elicited a vasoconstrictor response (87% of pre-ACh diameter 30 min after reperfusion) for the first 60 min of reperfusion after 10 min of ischemia. ACh-induced vasodilation was restored by 75 min (105%), but was less than control even at 120 min (109 vs. 117%; p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":9009,\"journal\":{\"name\":\"Blood vessels\",\"volume\":\"28 1-3\",\"pages\":\"46-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000158842\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood vessels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000158842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood vessels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000158842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Postischemic cerebral blood flow and neuroeffector mechanisms.
The influence of neuroeffector mechanisms in the regulation of postischemic cerebral blood flow was investigated by microsphere determination in 8 cats after chronic unilateral vascular deafferentation by trigeminal ganglionectomy. The animals were subjected to 90 min of reperfusion following 10 min of global ischemia induced by 4-vessel occlusion and systemic hypotension. Cortical hyperemia 30 min after reperfusion was attenuated by up to 48% in cortical gray matter ipsilateral to the side of trigeminal ganglionectomy (p less than 0.01). Axon reflex mechanisms involving the release of neuropeptides from peripheral sensory nerve fibers, such as substance P (SP), calcitonin gene-related peptide (CGRP) and neurokinin A (NKA), mediate this response. SP and NKA cause vasodilation by endothelium-dependent mechanisms (endothelium-dependent relaxing factor), whereas CGRP relaxes vascular smooth muscle by direct receptor interactions. Studies were therefore undertaken to determine the extent to which endothelium-dependent mechanisms mediate the hyperemia following global cerebral ischemia. In 7 intact cats, the postischemic response of pial arterioles to the topical application of acetylcholine (ACh; 10(-7) M), an endothelial-dependent vasodilator, was measured using a closed cranial window technique. Although ACh increased pial arteriolar caliber by 17% under resting conditions, the same dose elicited a vasoconstrictor response (87% of pre-ACh diameter 30 min after reperfusion) for the first 60 min of reperfusion after 10 min of ischemia. ACh-induced vasodilation was restored by 75 min (105%), but was less than control even at 120 min (109 vs. 117%; p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)