关于Minrank子图和Forbidden子图

I. Haviv
{"title":"关于Minrank子图和Forbidden子图","authors":"I. Haviv","doi":"10.1145/3322817","DOIUrl":null,"url":null,"abstract":"The minrank over a field F of a graph G on the vertex set { 1,2,… ,n} is the minimum possible rank of a matrix M ∈ Fn × n such that Mi, i ≠ 0 for every i, and Mi, j =0 for every distinct non-adjacent vertices i and j in G. For an integer n, a graph H, and a field F, let g(n,H, F) denote the maximum possible minrank over F of an n-vertex graph whose complement contains no copy of H. In this article, we study this quantity for various graphs H and fields F. For finite fields, we prove by a probabilistic argument a general lower bound on g(n,H,F), which yields a nearly tight bound of Ω (√ n/ log n) for the triangle H=K3. For the real field, we prove by an explicit construction that for every non-bipartite graph H, g(n,H, R) ≥ nδ for some δ = δ (H)> 0. As a by-product of this construction, we disprove a conjecture of Codenotti et al. [11]. The results are motivated by questions in information theory, circuit complexity, and geometry.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On Minrank and Forbidden Subgraphs\",\"authors\":\"I. Haviv\",\"doi\":\"10.1145/3322817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minrank over a field F of a graph G on the vertex set { 1,2,… ,n} is the minimum possible rank of a matrix M ∈ Fn × n such that Mi, i ≠ 0 for every i, and Mi, j =0 for every distinct non-adjacent vertices i and j in G. For an integer n, a graph H, and a field F, let g(n,H, F) denote the maximum possible minrank over F of an n-vertex graph whose complement contains no copy of H. In this article, we study this quantity for various graphs H and fields F. For finite fields, we prove by a probabilistic argument a general lower bound on g(n,H,F), which yields a nearly tight bound of Ω (√ n/ log n) for the triangle H=K3. For the real field, we prove by an explicit construction that for every non-bipartite graph H, g(n,H, R) ≥ nδ for some δ = δ (H)> 0. As a by-product of this construction, we disprove a conjecture of Codenotti et al. [11]. The results are motivated by questions in information theory, circuit complexity, and geometry.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3322817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3322817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

minrank一场F图G的顶点集合{1,2,…,n}的最低可能的排名是一个矩阵M∈Fn×n Mi,我≠0每,Mi, j = 0来为每一个不同的不相邻的顶点在G . i和j整数n, H,图表和一个领域F,让G (n、H F)表示的最大可能minrank F (n点图的补充不含副本H。在本文中,我们研究这个量为各种图F . H和字段为有限的领域,我们用一个概率论证证明了g(n,H,F)的一般下界,得到了三角形H=K3的近似紧界Ω(√n/ log n)。对于实域,我们通过一个显式构造证明了对于每一个非二部图H, g(n,H, R)≥nδ对于某些δ = δ (H)> 0。作为这种构造的副产品,我们反驳了Codenotti等人[11]的一个猜想。这些结果是由信息论、电路复杂性和几何中的问题所激发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Minrank and Forbidden Subgraphs
The minrank over a field F of a graph G on the vertex set { 1,2,… ,n} is the minimum possible rank of a matrix M ∈ Fn × n such that Mi, i ≠ 0 for every i, and Mi, j =0 for every distinct non-adjacent vertices i and j in G. For an integer n, a graph H, and a field F, let g(n,H, F) denote the maximum possible minrank over F of an n-vertex graph whose complement contains no copy of H. In this article, we study this quantity for various graphs H and fields F. For finite fields, we prove by a probabilistic argument a general lower bound on g(n,H,F), which yields a nearly tight bound of Ω (√ n/ log n) for the triangle H=K3. For the real field, we prove by an explicit construction that for every non-bipartite graph H, g(n,H, R) ≥ nδ for some δ = δ (H)> 0. As a by-product of this construction, we disprove a conjecture of Codenotti et al. [11]. The results are motivated by questions in information theory, circuit complexity, and geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信