基于云计算的蜜蜂机器人随机路径优化

F. Vázquez-Abad, Silvano Bernabel
{"title":"基于云计算的蜜蜂机器人随机路径优化","authors":"F. Vázquez-Abad, Silvano Bernabel","doi":"10.1109/WODES.2016.7497838","DOIUrl":null,"url":null,"abstract":"We study the problem of dynamic routing of robotic bees towards the hive, with the intended purpose of minimizing the time it takes for all the bees to arrive at the destination. Due to uncertainty in position measurements, the stochastic problem cannot ensure collision-free paths. We study the effects that the algorithm parameters have in reducing the computational complexity and expected number of collisions. The dynamic path allocation assumes signals are received every ε units of time. We provide a weak convergence proof that the stochastic dynamic allocation converges to the optimal deterministic path when ε → 0. Next we explore via experimentation how the various algorithm parameters affect the overall performance. A k-nearest neighbors strategy is implemented to lessen the need for small step size ε and safety parameter. Δ. In this manner we achieve a faster completion time, reduce collisions and computational complexity.","PeriodicalId":268613,"journal":{"name":"2016 13th International Workshop on Discrete Event Systems (WODES)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic path optimization for robotic bees using cloud computing\",\"authors\":\"F. Vázquez-Abad, Silvano Bernabel\",\"doi\":\"10.1109/WODES.2016.7497838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of dynamic routing of robotic bees towards the hive, with the intended purpose of minimizing the time it takes for all the bees to arrive at the destination. Due to uncertainty in position measurements, the stochastic problem cannot ensure collision-free paths. We study the effects that the algorithm parameters have in reducing the computational complexity and expected number of collisions. The dynamic path allocation assumes signals are received every ε units of time. We provide a weak convergence proof that the stochastic dynamic allocation converges to the optimal deterministic path when ε → 0. Next we explore via experimentation how the various algorithm parameters affect the overall performance. A k-nearest neighbors strategy is implemented to lessen the need for small step size ε and safety parameter. Δ. In this manner we achieve a faster completion time, reduce collisions and computational complexity.\",\"PeriodicalId\":268613,\"journal\":{\"name\":\"2016 13th International Workshop on Discrete Event Systems (WODES)\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Workshop on Discrete Event Systems (WODES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WODES.2016.7497838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Workshop on Discrete Event Systems (WODES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2016.7497838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了机器人蜜蜂到蜂巢的动态路径问题,目的是使所有蜜蜂到达目的地所需的时间最小。由于位置测量的不确定性,随机问题不能保证路径无碰撞。研究了算法参数对降低计算复杂度和期望碰撞次数的影响。动态路径分配假设每隔ε个单位时间接收一次信号。给出了当ε→0时随机动态分配收敛于最优确定性路径的弱收敛性证明。接下来,我们将通过实验探索各种算法参数如何影响整体性能。为了减少对小步长ε和安全参数的需求,采用了k近邻策略。Δ。通过这种方式,我们实现了更快的完成时间,减少了碰撞和计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic path optimization for robotic bees using cloud computing
We study the problem of dynamic routing of robotic bees towards the hive, with the intended purpose of minimizing the time it takes for all the bees to arrive at the destination. Due to uncertainty in position measurements, the stochastic problem cannot ensure collision-free paths. We study the effects that the algorithm parameters have in reducing the computational complexity and expected number of collisions. The dynamic path allocation assumes signals are received every ε units of time. We provide a weak convergence proof that the stochastic dynamic allocation converges to the optimal deterministic path when ε → 0. Next we explore via experimentation how the various algorithm parameters affect the overall performance. A k-nearest neighbors strategy is implemented to lessen the need for small step size ε and safety parameter. Δ. In this manner we achieve a faster completion time, reduce collisions and computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信