热等静压前后增材制造Ti-6Al4V

B. Baker, K. Wisdom
{"title":"热等静压前后增材制造Ti-6Al4V","authors":"B. Baker, K. Wisdom","doi":"10.4236/WJET.2021.92019","DOIUrl":null,"url":null,"abstract":"The crystalline structure and mechanical properties of titanium 6Al 4V produced via selective laser sintering were compared to literature examples and to wrought samples. In total, three sets of samples were analyzed: wrought, as printed selective laser sintering samples with no post processing, and selective laser sintering samples that were further processed via hot isostatic pressing for final consolidation. Samples were sectioned to fit on graphitic resin pucks and cut from the build plane in two orthogonal planes. Images were taken using a TESCAN MIRA3 scanning electron microscope with electron backscatter diffraction analysis and samples were etched for optical analysis. Hardness of the samples was measured using a Vickers hardness indenter. The overall chemical composition of the samples, both AM and wrought, were similar as confirmed using energy dispersive spectroscopy. Beta grains were observed in a columnar orientation along the build direction, however, the grain orientation did not appear to affect the hardness of the sample. A small amount of grain growth was observed in the post processed samples as compared to the as printed samples.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Additively Manufactured Ti-6Al4V before and after Hot Isostatic Pressing\",\"authors\":\"B. Baker, K. Wisdom\",\"doi\":\"10.4236/WJET.2021.92019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystalline structure and mechanical properties of titanium 6Al 4V produced via selective laser sintering were compared to literature examples and to wrought samples. In total, three sets of samples were analyzed: wrought, as printed selective laser sintering samples with no post processing, and selective laser sintering samples that were further processed via hot isostatic pressing for final consolidation. Samples were sectioned to fit on graphitic resin pucks and cut from the build plane in two orthogonal planes. Images were taken using a TESCAN MIRA3 scanning electron microscope with electron backscatter diffraction analysis and samples were etched for optical analysis. Hardness of the samples was measured using a Vickers hardness indenter. The overall chemical composition of the samples, both AM and wrought, were similar as confirmed using energy dispersive spectroscopy. Beta grains were observed in a columnar orientation along the build direction, however, the grain orientation did not appear to affect the hardness of the sample. A small amount of grain growth was observed in the post processed samples as compared to the as printed samples.\",\"PeriodicalId\":344331,\"journal\":{\"name\":\"World Journal of Engineering and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/WJET.2021.92019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/WJET.2021.92019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对选择性激光烧结制备的6Al - 4V钛的晶体结构和力学性能进行了比较。总共分析了三组样品:锻造的,作为印刷的选择性激光烧结样品,没有后处理;选择性激光烧结样品,通过热等静压进一步处理,最终固结。样品被切片以适应石墨树脂袋,并从两个正交的平面上切割。使用TESCAN MIRA3扫描电子显微镜进行电子背散射衍射分析,并对样品进行蚀刻以进行光学分析。用维氏硬度压头测量样品的硬度。样品的整体化学成分,无论是AM和锻造,都与使用能量色散光谱证实的相似。β晶粒沿构建方向呈柱状取向,但晶粒取向不影响样品的硬度。与印刷样品相比,在处理后的样品中观察到少量的晶粒生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additively Manufactured Ti-6Al4V before and after Hot Isostatic Pressing
The crystalline structure and mechanical properties of titanium 6Al 4V produced via selective laser sintering were compared to literature examples and to wrought samples. In total, three sets of samples were analyzed: wrought, as printed selective laser sintering samples with no post processing, and selective laser sintering samples that were further processed via hot isostatic pressing for final consolidation. Samples were sectioned to fit on graphitic resin pucks and cut from the build plane in two orthogonal planes. Images were taken using a TESCAN MIRA3 scanning electron microscope with electron backscatter diffraction analysis and samples were etched for optical analysis. Hardness of the samples was measured using a Vickers hardness indenter. The overall chemical composition of the samples, both AM and wrought, were similar as confirmed using energy dispersive spectroscopy. Beta grains were observed in a columnar orientation along the build direction, however, the grain orientation did not appear to affect the hardness of the sample. A small amount of grain growth was observed in the post processed samples as compared to the as printed samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信