pyBumpHunter的代码库版本0.4

L. Vaslin, S. Calvet, Vincent Barra, J. Donini
{"title":"pyBumpHunter的代码库版本0.4","authors":"L. Vaslin, S. Calvet, Vincent Barra, J. Donini","doi":"10.21468/scipostphyscodeb.15-r0.4","DOIUrl":null,"url":null,"abstract":"The BumpHunter algorithm is widely used in the search for new particles in High Energy Physics analysis. This algorithm offers the advantage of evaluating the local and global p-values of a localized deviation in the observed data without making any hypothesis on the supposed signal. The increasing popularity of the Python programming language motivated the development of a new public implementation of this algorithm in Python, called pyBumpHunter, together with several improvements and additional features. It is the first public implementation of the BumpHunter algorithm to be added to Scikit-HEP. This paper presents in detail the BumpHunter algorithm as well as all the features proposed in this implementation. All these features have been tested in order to demonstrate their behaviour and performance.","PeriodicalId":430271,"journal":{"name":"SciPost Physics Codebases","volume":"608 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codebase release 0.4 for pyBumpHunter\",\"authors\":\"L. Vaslin, S. Calvet, Vincent Barra, J. Donini\",\"doi\":\"10.21468/scipostphyscodeb.15-r0.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The BumpHunter algorithm is widely used in the search for new particles in High Energy Physics analysis. This algorithm offers the advantage of evaluating the local and global p-values of a localized deviation in the observed data without making any hypothesis on the supposed signal. The increasing popularity of the Python programming language motivated the development of a new public implementation of this algorithm in Python, called pyBumpHunter, together with several improvements and additional features. It is the first public implementation of the BumpHunter algorithm to be added to Scikit-HEP. This paper presents in detail the BumpHunter algorithm as well as all the features proposed in this implementation. All these features have been tested in order to demonstrate their behaviour and performance.\",\"PeriodicalId\":430271,\"journal\":{\"name\":\"SciPost Physics Codebases\",\"volume\":\"608 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics Codebases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphyscodeb.15-r0.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics Codebases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/scipostphyscodeb.15-r0.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高能物理分析中,BumpHunter算法被广泛应用于寻找新粒子。该算法的优点是无需对假定的信号进行任何假设,即可评估观测数据中局部偏差的局部和全局p值。Python编程语言的日益流行促使在Python中开发了该算法的一个新的公共实现,称为pyBumpHunter,以及一些改进和附加功能。这是将BumpHunter算法添加到Scikit-HEP中的第一个公开实现。本文详细介绍了BumpHunter算法及其实现中提出的所有特性。所有这些功能都经过了测试,以展示它们的行为和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Codebase release 0.4 for pyBumpHunter
The BumpHunter algorithm is widely used in the search for new particles in High Energy Physics analysis. This algorithm offers the advantage of evaluating the local and global p-values of a localized deviation in the observed data without making any hypothesis on the supposed signal. The increasing popularity of the Python programming language motivated the development of a new public implementation of this algorithm in Python, called pyBumpHunter, together with several improvements and additional features. It is the first public implementation of the BumpHunter algorithm to be added to Scikit-HEP. This paper presents in detail the BumpHunter algorithm as well as all the features proposed in this implementation. All these features have been tested in order to demonstrate their behaviour and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信