使用深度表示实现了带有信息突出显示的自动隐私策略注释

Abdulrahman Alabduljabbar, Ahmed A. Abusnaina, Ülkü Meteriz-Yildiran, David A. Mohaisen
{"title":"使用深度表示实现了带有信息突出显示的自动隐私策略注释","authors":"Abdulrahman Alabduljabbar, Ahmed A. Abusnaina, Ülkü Meteriz-Yildiran, David A. Mohaisen","doi":"10.1145/3460120.3485335","DOIUrl":null,"url":null,"abstract":"The privacy policy statements are the primary mean for service providers to inform Internet users about their data collection and use practices, although they often are long and lack a specific structure. In this work, we introduce TLDR, a pipeline that employs various deep representation techniques for normalizing policies through learning and modeling, and an automated ensemble classifier for privacy policy classification. TLDR advances the state-of-the-art by (i) categorizing policy contents into nine privacy policy categories with high accuracy, (ii) detecting missing information in privacy policies, and (iii) significantly reducing policy reading time and improving understandability by users.","PeriodicalId":135883,"journal":{"name":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automated Privacy Policy Annotation with Information Highlighting Made Practical Using Deep Representations\",\"authors\":\"Abdulrahman Alabduljabbar, Ahmed A. Abusnaina, Ülkü Meteriz-Yildiran, David A. Mohaisen\",\"doi\":\"10.1145/3460120.3485335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The privacy policy statements are the primary mean for service providers to inform Internet users about their data collection and use practices, although they often are long and lack a specific structure. In this work, we introduce TLDR, a pipeline that employs various deep representation techniques for normalizing policies through learning and modeling, and an automated ensemble classifier for privacy policy classification. TLDR advances the state-of-the-art by (i) categorizing policy contents into nine privacy policy categories with high accuracy, (ii) detecting missing information in privacy policies, and (iii) significantly reducing policy reading time and improving understandability by users.\",\"PeriodicalId\":135883,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460120.3485335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460120.3485335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

隐私政策声明是服务提供商告知互联网用户其数据收集和使用做法的主要手段,尽管这些声明通常很长,而且缺乏具体的结构。在这项工作中,我们介绍了TLDR,一个采用各种深度表示技术通过学习和建模来规范化策略的管道,以及一个用于隐私策略分类的自动集成分类器。TLDR通过(i)将策略内容高精度地划分为9个隐私策略类别,(ii)检测隐私策略中的缺失信息,以及(iii)显著减少策略阅读时间并提高用户的可理解性来推进最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Privacy Policy Annotation with Information Highlighting Made Practical Using Deep Representations
The privacy policy statements are the primary mean for service providers to inform Internet users about their data collection and use practices, although they often are long and lack a specific structure. In this work, we introduce TLDR, a pipeline that employs various deep representation techniques for normalizing policies through learning and modeling, and an automated ensemble classifier for privacy policy classification. TLDR advances the state-of-the-art by (i) categorizing policy contents into nine privacy policy categories with high accuracy, (ii) detecting missing information in privacy policies, and (iii) significantly reducing policy reading time and improving understandability by users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信