使用Lennard-Jones近似的实时云模拟

Akila Elhaddad, Feriel Elhaddad, Bin Sheng, Shuai Zhang, Hanqiu Sun, E. Wu
{"title":"使用Lennard-Jones近似的实时云模拟","authors":"Akila Elhaddad, Feriel Elhaddad, Bin Sheng, Shuai Zhang, Hanqiu Sun, E. Wu","doi":"10.1145/2915926.2915942","DOIUrl":null,"url":null,"abstract":"Cloud simulation is important for creating images of outdoor scenes. However, the complexity of this natural phenomenon makes the simulation of large-scale clouds difficult in real time. In this paper, we present a new method for 3D cloud simulation in which cloud animation is simplified and simulated by approximating Lennard-Jones Potential. To solve the N-body problem in Lennard-Jones Potential, we minimized the interaction between particles by dividing the simulation space into many cells and we defined a cutoff distance to perform calculation between neighboring particles. Additionally, a separate distance is introduced between particles to maintain the stability in the Lennard-Jones system. Our experimental results demonstrate that our method is computationally inexpensive and suitable for real time applications where large-scale simulation of clouds is required.","PeriodicalId":409915,"journal":{"name":"Proceedings of the 29th International Conference on Computer Animation and Social Agents","volume":"48 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Real-Time Cloud Simulation Using Lennard-Jones Approximation\",\"authors\":\"Akila Elhaddad, Feriel Elhaddad, Bin Sheng, Shuai Zhang, Hanqiu Sun, E. Wu\",\"doi\":\"10.1145/2915926.2915942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud simulation is important for creating images of outdoor scenes. However, the complexity of this natural phenomenon makes the simulation of large-scale clouds difficult in real time. In this paper, we present a new method for 3D cloud simulation in which cloud animation is simplified and simulated by approximating Lennard-Jones Potential. To solve the N-body problem in Lennard-Jones Potential, we minimized the interaction between particles by dividing the simulation space into many cells and we defined a cutoff distance to perform calculation between neighboring particles. Additionally, a separate distance is introduced between particles to maintain the stability in the Lennard-Jones system. Our experimental results demonstrate that our method is computationally inexpensive and suitable for real time applications where large-scale simulation of clouds is required.\",\"PeriodicalId\":409915,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Computer Animation and Social Agents\",\"volume\":\"48 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Computer Animation and Social Agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2915926.2915942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Computer Animation and Social Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2915926.2915942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

云模拟对于创建室外场景的图像非常重要。然而,这种自然现象的复杂性使得大规模云的实时模拟变得困难。在本文中,我们提出了一种新的三维云模拟方法,该方法通过近似Lennard-Jones势来简化和模拟云动画。为了解决Lennard-Jones势中的n体问题,我们通过将模拟空间划分为多个单元来最小化粒子之间的相互作用,并定义一个截止距离来进行相邻粒子之间的计算。此外,在粒子之间引入单独的距离以保持Lennard-Jones体系的稳定性。我们的实验结果表明,我们的方法计算成本低,适合于需要大规模云模拟的实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Cloud Simulation Using Lennard-Jones Approximation
Cloud simulation is important for creating images of outdoor scenes. However, the complexity of this natural phenomenon makes the simulation of large-scale clouds difficult in real time. In this paper, we present a new method for 3D cloud simulation in which cloud animation is simplified and simulated by approximating Lennard-Jones Potential. To solve the N-body problem in Lennard-Jones Potential, we minimized the interaction between particles by dividing the simulation space into many cells and we defined a cutoff distance to perform calculation between neighboring particles. Additionally, a separate distance is introduced between particles to maintain the stability in the Lennard-Jones system. Our experimental results demonstrate that our method is computationally inexpensive and suitable for real time applications where large-scale simulation of clouds is required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信