基于树的快速旋律检索方法

Charles Parker
{"title":"基于树的快速旋律检索方法","authors":"Charles Parker","doi":"10.1145/996350.996409","DOIUrl":null,"url":null,"abstract":"The evolution of aurally queryable melodic databases (so-called query-by-humming systems) has reached a point where retrieval accuracy is relatively high, even at large database sizes. With this accuracy has come a decrease in retrieval speed as methods have become more sophisticated and computationally expensive. In this paper, we turn our attention to heuristically culling songs from our database that are unlikely given a sung query, in hopes that we can increase speed by reducing the number of matching computations necessary to reach the proper target song.","PeriodicalId":362133,"journal":{"name":"Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A tree-based method for fast melodic retrieval\",\"authors\":\"Charles Parker\",\"doi\":\"10.1145/996350.996409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution of aurally queryable melodic databases (so-called query-by-humming systems) has reached a point where retrieval accuracy is relatively high, even at large database sizes. With this accuracy has come a decrease in retrieval speed as methods have become more sophisticated and computationally expensive. In this paper, we turn our attention to heuristically culling songs from our database that are unlikely given a sung query, in hopes that we can increase speed by reducing the number of matching computations necessary to reach the proper target song.\",\"PeriodicalId\":362133,\"journal\":{\"name\":\"Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/996350.996409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/996350.996409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

听觉上可查询的旋律数据库(所谓的按哼声查询系统)的发展已经达到了检索精度相对较高的程度,即使在大型数据库中也是如此。随着准确性的提高,检索速度也随之下降,因为方法变得越来越复杂,计算成本也越来越高。在本文中,我们将注意力转向启发式地从数据库中剔除不太可能给出歌曲查询的歌曲,希望我们可以通过减少达到适当目标歌曲所需的匹配计算次数来提高速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tree-based method for fast melodic retrieval
The evolution of aurally queryable melodic databases (so-called query-by-humming systems) has reached a point where retrieval accuracy is relatively high, even at large database sizes. With this accuracy has come a decrease in retrieval speed as methods have become more sophisticated and computationally expensive. In this paper, we turn our attention to heuristically culling songs from our database that are unlikely given a sung query, in hopes that we can increase speed by reducing the number of matching computations necessary to reach the proper target song.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信