基于鱼群组合进化方法的向量和矩阵数据数组聚类

Yevgeniy V. Bodyanskiy, A. Shafronenko, I. Pliss
{"title":"基于鱼群组合进化方法的向量和矩阵数据数组聚类","authors":"Yevgeniy V. Bodyanskiy, A. Shafronenko, I. Pliss","doi":"10.20535/srit.2308-8893.2022.4.07","DOIUrl":null,"url":null,"abstract":"The problem of clustering data arrays described in both vector and matrix forms and based on the optimization of data distribution density functions in these arrays is considered. For the optimization of these functions, the algorithm that is a hybrid of Fish School Search, random search, and evolutionary optimization is proposed. This algorithm does not require calculating the optimized function’s derivatives and, in the general case, is designed to find optimums of multiextremal functions of the matrix argument (images). The proposed approach reduces the number of runs of the optimization procedure, finds extrema of complex functions with many extrema, and is simple in numerical implementation.","PeriodicalId":330635,"journal":{"name":"System research and information technologies","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clusterization of vector and matrix data arrays using the combined evolutionary method of fish schools\",\"authors\":\"Yevgeniy V. Bodyanskiy, A. Shafronenko, I. Pliss\",\"doi\":\"10.20535/srit.2308-8893.2022.4.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of clustering data arrays described in both vector and matrix forms and based on the optimization of data distribution density functions in these arrays is considered. For the optimization of these functions, the algorithm that is a hybrid of Fish School Search, random search, and evolutionary optimization is proposed. This algorithm does not require calculating the optimized function’s derivatives and, in the general case, is designed to find optimums of multiextremal functions of the matrix argument (images). The proposed approach reduces the number of runs of the optimization procedure, finds extrema of complex functions with many extrema, and is simple in numerical implementation.\",\"PeriodicalId\":330635,\"journal\":{\"name\":\"System research and information technologies\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"System research and information technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/srit.2308-8893.2022.4.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"System research and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2022.4.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了以向量和矩阵形式描述的数据数组的聚类问题,并基于这些数组中的数据分布密度函数的优化。针对这些函数的优化,提出了鱼群搜索、随机搜索和进化优化相结合的算法。该算法不需要计算优化函数的导数,在一般情况下,设计用于寻找矩阵参数(图像)的多极值函数的最优值。该方法减少了优化过程的运行次数,对具有多个极值的复杂函数求极值,且数值实现简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clusterization of vector and matrix data arrays using the combined evolutionary method of fish schools
The problem of clustering data arrays described in both vector and matrix forms and based on the optimization of data distribution density functions in these arrays is considered. For the optimization of these functions, the algorithm that is a hybrid of Fish School Search, random search, and evolutionary optimization is proposed. This algorithm does not require calculating the optimized function’s derivatives and, in the general case, is designed to find optimums of multiextremal functions of the matrix argument (images). The proposed approach reduces the number of runs of the optimization procedure, finds extrema of complex functions with many extrema, and is simple in numerical implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信