云工作负载预测和生成模型

Gilles Madi-Wamba, Yunbo Li, Anne-Cécile Orgerie, Nicolas Beldiceanu, Jean-Marc Menaud
{"title":"云工作负载预测和生成模型","authors":"Gilles Madi-Wamba, Yunbo Li, Anne-Cécile Orgerie, Nicolas Beldiceanu, Jean-Marc Menaud","doi":"10.1109/SBAC-PAD.2017.19","DOIUrl":null,"url":null,"abstract":"Cloud computing allows for elasticity as users can dynamically benefit from new virtual resources when their workload increases. Such a feature requires highly reactive resource provisioning mechanisms. In this paper, we propose two new workload prediction models, based on constraint programming and neural networks, that can be used for dynamic resource provisioning in Cloud environments. We also present two workload trace generators that can help to extend an experimental dataset in order to test more widely resource optimization heuristics. Our models are validated using real traces from a small Cloud provider. Both approaches are shown to be complimentary as neural networks give better prediction results, while constraint programming is more suitable for trace generation.","PeriodicalId":187204,"journal":{"name":"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Cloud Workload Prediction and Generation Models\",\"authors\":\"Gilles Madi-Wamba, Yunbo Li, Anne-Cécile Orgerie, Nicolas Beldiceanu, Jean-Marc Menaud\",\"doi\":\"10.1109/SBAC-PAD.2017.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing allows for elasticity as users can dynamically benefit from new virtual resources when their workload increases. Such a feature requires highly reactive resource provisioning mechanisms. In this paper, we propose two new workload prediction models, based on constraint programming and neural networks, that can be used for dynamic resource provisioning in Cloud environments. We also present two workload trace generators that can help to extend an experimental dataset in order to test more widely resource optimization heuristics. Our models are validated using real traces from a small Cloud provider. Both approaches are shown to be complimentary as neural networks give better prediction results, while constraint programming is more suitable for trace generation.\",\"PeriodicalId\":187204,\"journal\":{\"name\":\"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD.2017.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2017.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

云计算允许弹性,因为当用户的工作负载增加时,用户可以动态地从新的虚拟资源中获益。这样的特性需要高度反应性的资源供应机制。在本文中,我们提出了两个新的基于约束规划和神经网络的工作负载预测模型,可用于云环境中的动态资源配置。我们还提供了两个工作负载跟踪生成器,它们可以帮助扩展实验数据集,以便测试更广泛的资源优化启发式。我们的模型使用来自小型云提供商的真实痕迹进行验证。两种方法都是互补的,神经网络的预测效果更好,而约束规划更适合于轨迹生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloud Workload Prediction and Generation Models
Cloud computing allows for elasticity as users can dynamically benefit from new virtual resources when their workload increases. Such a feature requires highly reactive resource provisioning mechanisms. In this paper, we propose two new workload prediction models, based on constraint programming and neural networks, that can be used for dynamic resource provisioning in Cloud environments. We also present two workload trace generators that can help to extend an experimental dataset in order to test more widely resource optimization heuristics. Our models are validated using real traces from a small Cloud provider. Both approaches are shown to be complimentary as neural networks give better prediction results, while constraint programming is more suitable for trace generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信