基于纤维素纳米材料的全固态超级电容器柔性电极

M. Gao, Haishun Du
{"title":"基于纤维素纳米材料的全固态超级电容器柔性电极","authors":"M. Gao, Haishun Du","doi":"10.2174/2210298102666220609123822","DOIUrl":null,"url":null,"abstract":"\n\nIn recent years, flexible all-solid-state supercapacitors have been widely used as the energy storage devices for various smart and wearable electronic devices. However, the design and fabrication of high-performance flexible supercapacitor electrodes is still challenging since most of the active materials used for supercapacitor electrodes lack the ability to form flexible and mechanically stable structures. Recently, cellulose nanomaterials (mainly include cellulose nanocrystals and cellulose nanofibrils) have gained extensive interests due to their large specific surface areas, versatile surface chemistry, high mechanical strength, and the ability to form mechanically stable structures (e.g., films, aerogels). These days, the design of flexible supercapacitor electrodes by combining cellulose nanomaterials with different active materials gradually attracted the attention of scholars. The main objective of this review is to give an overview of recent developments in the preparation of cellulose nanomaterials based flexible all-solid-state supercapacitor electrodes. The fabrication approach, structure characterization, and electrochemical performance of the invented cellulose nanomaterials based flexible supercapacitor are elaborated. Also, the current challenges and future outlook for the design and fabrication of cellulose nanomaterials based flexible all-solid-state supercapacitor are proposed.\n","PeriodicalId":184819,"journal":{"name":"Current Chinese Science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cellulose Nanomaterials Based Flexible Electrodes for All-Solid-State Supercapacitors\",\"authors\":\"M. Gao, Haishun Du\",\"doi\":\"10.2174/2210298102666220609123822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nIn recent years, flexible all-solid-state supercapacitors have been widely used as the energy storage devices for various smart and wearable electronic devices. However, the design and fabrication of high-performance flexible supercapacitor electrodes is still challenging since most of the active materials used for supercapacitor electrodes lack the ability to form flexible and mechanically stable structures. Recently, cellulose nanomaterials (mainly include cellulose nanocrystals and cellulose nanofibrils) have gained extensive interests due to their large specific surface areas, versatile surface chemistry, high mechanical strength, and the ability to form mechanically stable structures (e.g., films, aerogels). These days, the design of flexible supercapacitor electrodes by combining cellulose nanomaterials with different active materials gradually attracted the attention of scholars. The main objective of this review is to give an overview of recent developments in the preparation of cellulose nanomaterials based flexible all-solid-state supercapacitor electrodes. The fabrication approach, structure characterization, and electrochemical performance of the invented cellulose nanomaterials based flexible supercapacitor are elaborated. Also, the current challenges and future outlook for the design and fabrication of cellulose nanomaterials based flexible all-solid-state supercapacitor are proposed.\\n\",\"PeriodicalId\":184819,\"journal\":{\"name\":\"Current Chinese Science\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Chinese Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210298102666220609123822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Chinese Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210298102666220609123822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,柔性全固态超级电容器作为各种智能和可穿戴电子设备的储能器件得到了广泛的应用。然而,高性能柔性超级电容器电极的设计和制造仍然具有挑战性,因为大多数用于超级电容器电极的活性材料缺乏形成柔性和机械稳定结构的能力。近年来,纤维素纳米材料(主要包括纤维素纳米晶体和纤维素纳米原纤维)因其比表面积大、表面化学性质多样、机械强度高以及能够形成机械稳定结构(如薄膜、气凝胶)而受到广泛关注。近年来,纤维素纳米材料与不同活性材料相结合的柔性超级电容器电极设计逐渐引起了学者们的关注。本文综述了纤维素纳米材料制备柔性全固态超级电容器电极的最新进展。阐述了纤维素纳米材料柔性超级电容器的制备方法、结构表征和电化学性能。最后,对纤维素纳米材料柔性全固态超级电容器的设计与制造面临的挑战和前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellulose Nanomaterials Based Flexible Electrodes for All-Solid-State Supercapacitors
In recent years, flexible all-solid-state supercapacitors have been widely used as the energy storage devices for various smart and wearable electronic devices. However, the design and fabrication of high-performance flexible supercapacitor electrodes is still challenging since most of the active materials used for supercapacitor electrodes lack the ability to form flexible and mechanically stable structures. Recently, cellulose nanomaterials (mainly include cellulose nanocrystals and cellulose nanofibrils) have gained extensive interests due to their large specific surface areas, versatile surface chemistry, high mechanical strength, and the ability to form mechanically stable structures (e.g., films, aerogels). These days, the design of flexible supercapacitor electrodes by combining cellulose nanomaterials with different active materials gradually attracted the attention of scholars. The main objective of this review is to give an overview of recent developments in the preparation of cellulose nanomaterials based flexible all-solid-state supercapacitor electrodes. The fabrication approach, structure characterization, and electrochemical performance of the invented cellulose nanomaterials based flexible supercapacitor are elaborated. Also, the current challenges and future outlook for the design and fabrication of cellulose nanomaterials based flexible all-solid-state supercapacitor are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信