基于组合群理论的挑战响应密码安全

G. Baumslag, Yegor Bryukhov, B. Fine, Douglas R. Troeger
{"title":"基于组合群理论的挑战响应密码安全","authors":"G. Baumslag, Yegor Bryukhov, B. Fine, Douglas R. Troeger","doi":"10.1515/gcc.2010.005","DOIUrl":null,"url":null,"abstract":"Abstract Challenge response methods are increasingly used to enhance password security. In this paper we present a very secure method for challenge response password verification using combinatorial group theory. This method, which relies on the group randomizer system, a subset of the MAGNUS computer algebra system, handles most of the present problems with challenge response systems. Theoretical security is based on several results in asymptotic group theory.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"45 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Challenge response password security using combinatorial group theory\",\"authors\":\"G. Baumslag, Yegor Bryukhov, B. Fine, Douglas R. Troeger\",\"doi\":\"10.1515/gcc.2010.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Challenge response methods are increasingly used to enhance password security. In this paper we present a very secure method for challenge response password verification using combinatorial group theory. This method, which relies on the group randomizer system, a subset of the MAGNUS computer algebra system, handles most of the present problems with challenge response systems. Theoretical security is based on several results in asymptotic group theory.\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"45 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc.2010.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc.2010.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

挑战响应方法越来越多地用于提高密码安全性。本文利用组合群理论提出了一种非常安全的挑战响应密码验证方法。该方法依赖于MAGNUS计算机代数系统的子集群随机系统,可以处理当前挑战响应系统的大多数问题。理论安全性建立在渐近群理论的几个结果的基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenge response password security using combinatorial group theory
Abstract Challenge response methods are increasingly used to enhance password security. In this paper we present a very secure method for challenge response password verification using combinatorial group theory. This method, which relies on the group randomizer system, a subset of the MAGNUS computer algebra system, handles most of the present problems with challenge response systems. Theoretical security is based on several results in asymptotic group theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信