用定界控制算子直接证明Cantor空间上Veldman的开归纳

Danko Ilik, Keiko Nakata
{"title":"用定界控制算子直接证明Cantor空间上Veldman的开归纳","authors":"Danko Ilik, Keiko Nakata","doi":"10.4230/LIPIcs.TYPES.2013.188","DOIUrl":null,"url":null,"abstract":"First, we reconstruct Wim Veldman's result that Open Induction on Cantor space can be derived from Double-negation Shift and Markov's Principle. In doing this, we notice that one has to use a countable choice axiom in the proof and that Markov's Principle is replaceable by slightly strengthening the Double-negation Shift schema. We show that this strengthened version of Double-negation Shift can nonetheless be derived in a constructive intermediate logic based on delimited control operators, extended with axioms for higher-type Heyting Arithmetic. We formalize the argument and thus obtain a proof term that directly derives Open Induction on Cantor space by the shift and reset delimited control operators of Danvy and Filinski.","PeriodicalId":131421,"journal":{"name":"Types for Proofs and Programs","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Direct Version of Veldman's Proof of Open Induction on Cantor Space via Delimited Control Operators\",\"authors\":\"Danko Ilik, Keiko Nakata\",\"doi\":\"10.4230/LIPIcs.TYPES.2013.188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First, we reconstruct Wim Veldman's result that Open Induction on Cantor space can be derived from Double-negation Shift and Markov's Principle. In doing this, we notice that one has to use a countable choice axiom in the proof and that Markov's Principle is replaceable by slightly strengthening the Double-negation Shift schema. We show that this strengthened version of Double-negation Shift can nonetheless be derived in a constructive intermediate logic based on delimited control operators, extended with axioms for higher-type Heyting Arithmetic. We formalize the argument and thus obtain a proof term that directly derives Open Induction on Cantor space by the shift and reset delimited control operators of Danvy and Filinski.\",\"PeriodicalId\":131421,\"journal\":{\"name\":\"Types for Proofs and Programs\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Types for Proofs and Programs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TYPES.2013.188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Types for Proofs and Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TYPES.2013.188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

首先,我们重构了Wim Veldman关于Cantor空间上的开放归纳可以由双负平移和Markov原理导出的结果。在此过程中,我们注意到在证明中必须使用可数选择公理,并且马尔可夫原理可以通过稍微加强双否定转移模式来替代。我们证明了这种强化版的双否定位移仍然可以在基于分隔控制算子的建设性中间逻辑中推导出来,并扩展了高类型Heyting算法的公理。我们将论证形式化,从而得到了一个证明项,该证明项直接推导出了由Danvy和Filinski的移位和重置分隔控制算子在Cantor空间上的开归纳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Direct Version of Veldman's Proof of Open Induction on Cantor Space via Delimited Control Operators
First, we reconstruct Wim Veldman's result that Open Induction on Cantor space can be derived from Double-negation Shift and Markov's Principle. In doing this, we notice that one has to use a countable choice axiom in the proof and that Markov's Principle is replaceable by slightly strengthening the Double-negation Shift schema. We show that this strengthened version of Double-negation Shift can nonetheless be derived in a constructive intermediate logic based on delimited control operators, extended with axioms for higher-type Heyting Arithmetic. We formalize the argument and thus obtain a proof term that directly derives Open Induction on Cantor space by the shift and reset delimited control operators of Danvy and Filinski.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信