{"title":"一类具有多格块支持的paly - wiener空间的框架","authors":"Ezra Tampubolon, V. Pohl, H. Boche","doi":"10.1109/SAMPTA.2015.7148856","DOIUrl":null,"url":null,"abstract":"Let Ω ⊂ R<sup>N</sup> be a bounded measurable set and let Λ ⊂ R<sup>N</sup> be a lattice. Assume that Ω tiles R<sup>N</sup> multiply at level K when translated by Λ. Then this paper derives conditions on sets of sampling functions such that they form a frame for the Paley-Wiener space PW<sub>Ω</sub> of functions bandlimited to Ω. Moreover, the canonical dual frame is derived, which allows signal recovery for all signals in PW<sub>Ω</sub> from a multichannel sampling system samples.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of frames for Paley-Wiener spaces with multiple lattice tiles support\",\"authors\":\"Ezra Tampubolon, V. Pohl, H. Boche\",\"doi\":\"10.1109/SAMPTA.2015.7148856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Ω ⊂ R<sup>N</sup> be a bounded measurable set and let Λ ⊂ R<sup>N</sup> be a lattice. Assume that Ω tiles R<sup>N</sup> multiply at level K when translated by Λ. Then this paper derives conditions on sets of sampling functions such that they form a frame for the Paley-Wiener space PW<sub>Ω</sub> of functions bandlimited to Ω. Moreover, the canonical dual frame is derived, which allows signal recovery for all signals in PW<sub>Ω</sub> from a multichannel sampling system samples.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"272 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A class of frames for Paley-Wiener spaces with multiple lattice tiles support
Let Ω ⊂ RN be a bounded measurable set and let Λ ⊂ RN be a lattice. Assume that Ω tiles RN multiply at level K when translated by Λ. Then this paper derives conditions on sets of sampling functions such that they form a frame for the Paley-Wiener space PWΩ of functions bandlimited to Ω. Moreover, the canonical dual frame is derived, which allows signal recovery for all signals in PWΩ from a multichannel sampling system samples.