基于叶的图像的GMB系列茶的剩余网络优化评价

Koredianto Usman, Nor Kumalasari Caecar Pratiwi, Nur Ibrahim, Heri Syahrian, V. P. Rahadi
{"title":"基于叶的图像的GMB系列茶的剩余网络优化评价","authors":"Koredianto Usman, Nor Kumalasari Caecar Pratiwi, Nur Ibrahim, Heri Syahrian, V. P. Rahadi","doi":"10.26760/elkomika.v9i4.841","DOIUrl":null,"url":null,"abstract":"ABSTRAKKomoditas teh berperan strategis terhadap pertumbuhan perekonomian Indonesia, salah satunya dari teh klon Gambung (GMB). Klon GMB memiliki beberapa karakter khas, dengan tingkat kemiripan morfologi yang sangat tinggi. Hal ini berdampak pada proses pengenalan klon GMB dilakukan melalui pengamatan visual oleh tenaga ahli sangat rentan terhadap kesalahan identifikasi. Sehingga, dalam penelitian ini dirancang suatu sistem identifikasi terhadap 11 klon teh seri GMB (GMB-1 hingga GMB-11) dengan menggunakan arsitektur ResNet101. Evaluasi sistem akan dilakukan dengan membandingkan tujuh algoritma optimizer yang berbeda, yaitu; Adam, SGD, RMSProp, AdaGrad, AdaMax, AdaDelta dan Nadam. Hasil pengujian menunjukkan bahwa Adam dan SGD memberikan nilai rata-rata presisi, recall dan F1-score terbaik. Selain itu, Adam memberikan nilai akurasi yang cenderung stabil sejak iterasi pertama. Metode yang diusulkan memberikan tingkat presisi, recall, F1-score sebesar 96% dan akurasi terbaik sebesar 97%.Kata kunci: klasifikasi daun teh, seri Gambung (GMB), CNN, ResNet101 ABSTRACTGambung (GMB) tea is one of the tea commodities that plays a key role in Indonesia's economic development. GMB clones have a number of distinguishing characteristics, including a high degree of morphological similarities. This has an impact on the process of identifying GMB clones through visual observation by experts who are subject to mistakes. In this study, ResNet101 architecture was used to create an identification scheme for 11 tea clones from the GMB series (GMB-1 to GMB-11). System evaluation will be carried out by comparing seven different optimizer; Adam, SGD, RMSProp, AdaGrad, AdaMax, AdaDelta, and Nadam. The test results indicate that Adam and SGD have the highest average accuracy, recall, and f1-score values. Adam also has an accuracy value that has remained consistent since the first iteration. The proposed method provides highest precision, recall, F1-score of 96% and accuracy of 97%.Keywords: tea leaves classification, GMB series, CNN, ResNet101","PeriodicalId":344430,"journal":{"name":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluasi Optimizer pada Residual Network untuk Klasifikasi Klon Teh Seri GMB Berbasis Citra Daun\",\"authors\":\"Koredianto Usman, Nor Kumalasari Caecar Pratiwi, Nur Ibrahim, Heri Syahrian, V. P. Rahadi\",\"doi\":\"10.26760/elkomika.v9i4.841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRAKKomoditas teh berperan strategis terhadap pertumbuhan perekonomian Indonesia, salah satunya dari teh klon Gambung (GMB). Klon GMB memiliki beberapa karakter khas, dengan tingkat kemiripan morfologi yang sangat tinggi. Hal ini berdampak pada proses pengenalan klon GMB dilakukan melalui pengamatan visual oleh tenaga ahli sangat rentan terhadap kesalahan identifikasi. Sehingga, dalam penelitian ini dirancang suatu sistem identifikasi terhadap 11 klon teh seri GMB (GMB-1 hingga GMB-11) dengan menggunakan arsitektur ResNet101. Evaluasi sistem akan dilakukan dengan membandingkan tujuh algoritma optimizer yang berbeda, yaitu; Adam, SGD, RMSProp, AdaGrad, AdaMax, AdaDelta dan Nadam. Hasil pengujian menunjukkan bahwa Adam dan SGD memberikan nilai rata-rata presisi, recall dan F1-score terbaik. Selain itu, Adam memberikan nilai akurasi yang cenderung stabil sejak iterasi pertama. Metode yang diusulkan memberikan tingkat presisi, recall, F1-score sebesar 96% dan akurasi terbaik sebesar 97%.Kata kunci: klasifikasi daun teh, seri Gambung (GMB), CNN, ResNet101 ABSTRACTGambung (GMB) tea is one of the tea commodities that plays a key role in Indonesia's economic development. GMB clones have a number of distinguishing characteristics, including a high degree of morphological similarities. This has an impact on the process of identifying GMB clones through visual observation by experts who are subject to mistakes. In this study, ResNet101 architecture was used to create an identification scheme for 11 tea clones from the GMB series (GMB-1 to GMB-11). System evaluation will be carried out by comparing seven different optimizer; Adam, SGD, RMSProp, AdaGrad, AdaMax, AdaDelta, and Nadam. The test results indicate that Adam and SGD have the highest average accuracy, recall, and f1-score values. Adam also has an accuracy value that has remained consistent since the first iteration. The proposed method provides highest precision, recall, F1-score of 96% and accuracy of 97%.Keywords: tea leaves classification, GMB series, CNN, ResNet101\",\"PeriodicalId\":344430,\"journal\":{\"name\":\"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26760/elkomika.v9i4.841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/elkomika.v9i4.841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

茶的抽象商品在印尼经济增长中发挥着战略作用,其中之一是甘邦茶(GMB)。GMB克隆有一些独特的特征,其形态相似性非常高。这影响了GMB的克隆识别过程,通过专家的视觉观察,很容易受到识别错误的影响。因此,在这项研究中,使用ResNet101建筑设计了一种识别GMB系列(GMB-1至gmb11)茶的系统。将通过比较7种不同的优化算法来实现系统评估;亚当,SGD, RMSProp, AdaGrad, AdaMax, AdaDelta和Nadam。测试结果表明,亚当和SGD提供了平均精确度、召回和最佳f1分。此外,亚当提供了一种自第一次迭代以来趋于稳定的精确度。建议的方法给出了精度,召回,F1-score为96%,最佳精度为97%。关键词:茶叶分类,gammb系列,CNN, ResNet101 ABSTRACTGambung (GMB)茶是印尼经济发展中扮演的关键角色之一。GMB有许多不同的特点,包括形态相似的高度。这对某些被误导的专家的视觉观察产生了影响。在这项研究中,ResNet101建筑致力于创建GMB系列中11杯茶的scheme。评估系统将被比作7个不同的优化;亚当,SGD, RMSProp, AdaGrad, AdaMax, AdaDelta, Nadam。亚当和SGD的最平均评分、复习和f1- values的评分测试。亚当自最初的重复以来一直保持着恒定的价值。建议的方法是最准确的,记忆是96%的f1分数,97%的准确。茶叶经典,GMB系列,CNN, ResNet101
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluasi Optimizer pada Residual Network untuk Klasifikasi Klon Teh Seri GMB Berbasis Citra Daun
ABSTRAKKomoditas teh berperan strategis terhadap pertumbuhan perekonomian Indonesia, salah satunya dari teh klon Gambung (GMB). Klon GMB memiliki beberapa karakter khas, dengan tingkat kemiripan morfologi yang sangat tinggi. Hal ini berdampak pada proses pengenalan klon GMB dilakukan melalui pengamatan visual oleh tenaga ahli sangat rentan terhadap kesalahan identifikasi. Sehingga, dalam penelitian ini dirancang suatu sistem identifikasi terhadap 11 klon teh seri GMB (GMB-1 hingga GMB-11) dengan menggunakan arsitektur ResNet101. Evaluasi sistem akan dilakukan dengan membandingkan tujuh algoritma optimizer yang berbeda, yaitu; Adam, SGD, RMSProp, AdaGrad, AdaMax, AdaDelta dan Nadam. Hasil pengujian menunjukkan bahwa Adam dan SGD memberikan nilai rata-rata presisi, recall dan F1-score terbaik. Selain itu, Adam memberikan nilai akurasi yang cenderung stabil sejak iterasi pertama. Metode yang diusulkan memberikan tingkat presisi, recall, F1-score sebesar 96% dan akurasi terbaik sebesar 97%.Kata kunci: klasifikasi daun teh, seri Gambung (GMB), CNN, ResNet101 ABSTRACTGambung (GMB) tea is one of the tea commodities that plays a key role in Indonesia's economic development. GMB clones have a number of distinguishing characteristics, including a high degree of morphological similarities. This has an impact on the process of identifying GMB clones through visual observation by experts who are subject to mistakes. In this study, ResNet101 architecture was used to create an identification scheme for 11 tea clones from the GMB series (GMB-1 to GMB-11). System evaluation will be carried out by comparing seven different optimizer; Adam, SGD, RMSProp, AdaGrad, AdaMax, AdaDelta, and Nadam. The test results indicate that Adam and SGD have the highest average accuracy, recall, and f1-score values. Adam also has an accuracy value that has remained consistent since the first iteration. The proposed method provides highest precision, recall, F1-score of 96% and accuracy of 97%.Keywords: tea leaves classification, GMB series, CNN, ResNet101
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信