{"title":"极化模式色散信道中OFDM信号的极化干扰抑制","authors":"B. Walkenhorst, T. Pratt","doi":"10.1109/MILCOM.2008.4753294","DOIUrl":null,"url":null,"abstract":"A dual-polarized antenna architecture is used in channels exhibiting polarization mode dispersion to investigate polarization-based interference suppression. In a wireless experiment, orthogonal frequency division multiplexing (OFDM) signals are transmitted from a slant-45deg polarized antenna and received with a dual-polarized antenna. The vertical (V) and horizontal (H) received complex baseband samples are corrupted by synthesized broadband interference with arbitrary polarization. Channel estimates are formed for each subcarrier of the received OFDM signal and minimum mean-squared error (MMSE) weights are computed to maximize the signal to interference plus noise ratio (SINR) with a single interferer. We find that this sub-band processing approach improves the performance relative to full-band processing because of the polarization mode dispersion found in a typical wireless channel.","PeriodicalId":434891,"journal":{"name":"MILCOM 2008 - 2008 IEEE Military Communications Conference","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Polarization-based interference mitigation for OFDM signals in channels with polarization mode dispersion\",\"authors\":\"B. Walkenhorst, T. Pratt\",\"doi\":\"10.1109/MILCOM.2008.4753294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dual-polarized antenna architecture is used in channels exhibiting polarization mode dispersion to investigate polarization-based interference suppression. In a wireless experiment, orthogonal frequency division multiplexing (OFDM) signals are transmitted from a slant-45deg polarized antenna and received with a dual-polarized antenna. The vertical (V) and horizontal (H) received complex baseband samples are corrupted by synthesized broadband interference with arbitrary polarization. Channel estimates are formed for each subcarrier of the received OFDM signal and minimum mean-squared error (MMSE) weights are computed to maximize the signal to interference plus noise ratio (SINR) with a single interferer. We find that this sub-band processing approach improves the performance relative to full-band processing because of the polarization mode dispersion found in a typical wireless channel.\",\"PeriodicalId\":434891,\"journal\":{\"name\":\"MILCOM 2008 - 2008 IEEE Military Communications Conference\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2008 - 2008 IEEE Military Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.2008.4753294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2008 - 2008 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2008.4753294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polarization-based interference mitigation for OFDM signals in channels with polarization mode dispersion
A dual-polarized antenna architecture is used in channels exhibiting polarization mode dispersion to investigate polarization-based interference suppression. In a wireless experiment, orthogonal frequency division multiplexing (OFDM) signals are transmitted from a slant-45deg polarized antenna and received with a dual-polarized antenna. The vertical (V) and horizontal (H) received complex baseband samples are corrupted by synthesized broadband interference with arbitrary polarization. Channel estimates are formed for each subcarrier of the received OFDM signal and minimum mean-squared error (MMSE) weights are computed to maximize the signal to interference plus noise ratio (SINR) with a single interferer. We find that this sub-band processing approach improves the performance relative to full-band processing because of the polarization mode dispersion found in a typical wireless channel.