三参数分数扩散中分数指数的唯一性判定

Ngartelbaye Guerngar, Erkan Nane, S. Ulusoy, H. Wyk
{"title":"三参数分数扩散中分数指数的唯一性判定","authors":"Ngartelbaye Guerngar, Erkan Nane, S. Ulusoy, H. Wyk","doi":"10.7153/fdc-2023-13-04","DOIUrl":null,"url":null,"abstract":"In this article, we consider the space-time Fractional (nonlocal) diffusion equation $$\\partial_t^\\beta u(t,x)={\\mathtt{L}_D^{\\alpha_1,\\alpha_2}} u(t,x), \\ \\ t\\geq 0, \\ x\\in D, $$ where $\\partial_t^\\beta$ is the Caputo fractional derivative of order $\\beta \\in (0,1)$ and the differential operator ${\\mathtt{L}_D^{\\alpha_1,\\alpha_2}}$ is the generator of a L\\'evy process, sum of two symmetric independent $\\alpha_1-$stable and $\\alpha_2-$stable processes and ${D}$ is the open unit interval in $\\mathbb{R}$. We consider a nonlocal inverse problem and show that the fractional exponents $\\beta$ and $\\alpha_i, \\ i=1,2$ are determined uniquely by the data $u(t, 0) = g(t),\\ 0 < t < T.$ The uniqueness result is a theoretical background for determining experimentally the order of many anomalous diffusion phenomena, which are important in many fields, including physics and environmental engineering. We also discuss the numerical approximation of the inverse problem as a nonlinear least-squares problem and explore parameter sensitivity through numerical experiments.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A uniqueness determination of the fractional exponents in a three-parameter fractional diffusion\",\"authors\":\"Ngartelbaye Guerngar, Erkan Nane, S. Ulusoy, H. Wyk\",\"doi\":\"10.7153/fdc-2023-13-04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the space-time Fractional (nonlocal) diffusion equation $$\\\\partial_t^\\\\beta u(t,x)={\\\\mathtt{L}_D^{\\\\alpha_1,\\\\alpha_2}} u(t,x), \\\\ \\\\ t\\\\geq 0, \\\\ x\\\\in D, $$ where $\\\\partial_t^\\\\beta$ is the Caputo fractional derivative of order $\\\\beta \\\\in (0,1)$ and the differential operator ${\\\\mathtt{L}_D^{\\\\alpha_1,\\\\alpha_2}}$ is the generator of a L\\\\'evy process, sum of two symmetric independent $\\\\alpha_1-$stable and $\\\\alpha_2-$stable processes and ${D}$ is the open unit interval in $\\\\mathbb{R}$. We consider a nonlocal inverse problem and show that the fractional exponents $\\\\beta$ and $\\\\alpha_i, \\\\ i=1,2$ are determined uniquely by the data $u(t, 0) = g(t),\\\\ 0 < t < T.$ The uniqueness result is a theoretical background for determining experimentally the order of many anomalous diffusion phenomena, which are important in many fields, including physics and environmental engineering. We also discuss the numerical approximation of the inverse problem as a nonlinear least-squares problem and explore parameter sensitivity through numerical experiments.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2023-13-04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2023-13-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑时空分数阶(非局部)扩散方程$$\partial_t^\beta u(t,x)={\mathtt{L}_D^{\alpha_1,\alpha_2}} u(t,x), \ \ t\geq 0, \ x\in D, $$,其中$\partial_t^\beta$为$\beta \in (0,1)$阶的Caputo分数阶导数,微分算子${\mathtt{L}_D^{\alpha_1,\alpha_2}}$为lsamvy过程的发生器,两个对称独立的$\alpha_1-$稳定过程和$\alpha_2-$稳定过程的和,${D}$为$\mathbb{R}$中的开单位区间。我们考虑了一个非局部逆问题,并证明分数指数$\beta$和$\alpha_i, \ i=1,2$是由数据$u(t, 0) = g(t),\ 0 < t < T.$唯一确定的。该唯一性结果为实验确定许多异常扩散现象的顺序提供了理论背景,这在包括物理和环境工程在内的许多领域都很重要。我们还讨论了反问题作为非线性最小二乘问题的数值逼近,并通过数值实验探讨了参数的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A uniqueness determination of the fractional exponents in a three-parameter fractional diffusion
In this article, we consider the space-time Fractional (nonlocal) diffusion equation $$\partial_t^\beta u(t,x)={\mathtt{L}_D^{\alpha_1,\alpha_2}} u(t,x), \ \ t\geq 0, \ x\in D, $$ where $\partial_t^\beta$ is the Caputo fractional derivative of order $\beta \in (0,1)$ and the differential operator ${\mathtt{L}_D^{\alpha_1,\alpha_2}}$ is the generator of a L\'evy process, sum of two symmetric independent $\alpha_1-$stable and $\alpha_2-$stable processes and ${D}$ is the open unit interval in $\mathbb{R}$. We consider a nonlocal inverse problem and show that the fractional exponents $\beta$ and $\alpha_i, \ i=1,2$ are determined uniquely by the data $u(t, 0) = g(t),\ 0 < t < T.$ The uniqueness result is a theoretical background for determining experimentally the order of many anomalous diffusion phenomena, which are important in many fields, including physics and environmental engineering. We also discuss the numerical approximation of the inverse problem as a nonlinear least-squares problem and explore parameter sensitivity through numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信