用(N,R)的条件子集与(N,R)的对角论证应用Cantor对角论证对Hilbert第一问题的可能解

Rajah Iyer
{"title":"用(N,R)的条件子集与(N,R)的对角论证应用Cantor对角论证对Hilbert第一问题的可能解","authors":"Rajah Iyer","doi":"10.5121/mathsj.2023.10203","DOIUrl":null,"url":null,"abstract":"We present herein a new approach to the Continuum hypothesis CH. We will employ a string conditioning, a technique that limits the range of a string over some of its sub-domains for forming subsets K of R. We will prove that these are well defined and in fact proper subsets of R by making use of Cantor’s Diagonal argument in its original form to establish the cardinality of K between that of (N,R) respectively","PeriodicalId":276601,"journal":{"name":"Applied Mathematics and Sciences An International Journal (MathSJ)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Possible Resolution to Hilbert’s first Problem by Applying Cantor’s Diagonal Argument with Conditioned Subsets of R, With That of (N,R)\",\"authors\":\"Rajah Iyer\",\"doi\":\"10.5121/mathsj.2023.10203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present herein a new approach to the Continuum hypothesis CH. We will employ a string conditioning, a technique that limits the range of a string over some of its sub-domains for forming subsets K of R. We will prove that these are well defined and in fact proper subsets of R by making use of Cantor’s Diagonal argument in its original form to establish the cardinality of K between that of (N,R) respectively\",\"PeriodicalId\":276601,\"journal\":{\"name\":\"Applied Mathematics and Sciences An International Journal (MathSJ)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Sciences An International Journal (MathSJ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/mathsj.2023.10203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Sciences An International Journal (MathSJ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/mathsj.2023.10203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在这里提出了一种新的方法来解决连续统假设CH。我们将采用一种字符串条件,一种限制字符串在它的一些子域上的范围以形成R的子集K的技术。我们将证明这些是定义良好的,实际上是R的适当子集,通过使用康托尔对角论证的原始形式来建立K的基数分别在(N,R)之间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Possible Resolution to Hilbert’s first Problem by Applying Cantor’s Diagonal Argument with Conditioned Subsets of R, With That of (N,R)
We present herein a new approach to the Continuum hypothesis CH. We will employ a string conditioning, a technique that limits the range of a string over some of its sub-domains for forming subsets K of R. We will prove that these are well defined and in fact proper subsets of R by making use of Cantor’s Diagonal argument in its original form to establish the cardinality of K between that of (N,R) respectively
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信