{"title":"对称投影吸引子重构:心电图的个体差异","authors":"J. Lyle, M. Nandi, P. Aston","doi":"10.23919/cinc53138.2021.9662820","DOIUrl":null,"url":null,"abstract":"The electrocardiogram (ECG) appears highly individual in nature. By applying the Symmetric Projection Attractor Reconstruction (SPAR) method, we obtain a unique visualisation of an individual's ECG and show how the subtle inter- and intra-individual differences observed may be quantified. This preliminary study supports further development of the novel SPAR approach for patient stratification and monitoring.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symmetric Projection Attractor Reconstruction: Inter-Individual Differences in the ECG\",\"authors\":\"J. Lyle, M. Nandi, P. Aston\",\"doi\":\"10.23919/cinc53138.2021.9662820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrocardiogram (ECG) appears highly individual in nature. By applying the Symmetric Projection Attractor Reconstruction (SPAR) method, we obtain a unique visualisation of an individual's ECG and show how the subtle inter- and intra-individual differences observed may be quantified. This preliminary study supports further development of the novel SPAR approach for patient stratification and monitoring.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symmetric Projection Attractor Reconstruction: Inter-Individual Differences in the ECG
The electrocardiogram (ECG) appears highly individual in nature. By applying the Symmetric Projection Attractor Reconstruction (SPAR) method, we obtain a unique visualisation of an individual's ECG and show how the subtle inter- and intra-individual differences observed may be quantified. This preliminary study supports further development of the novel SPAR approach for patient stratification and monitoring.