让我解密你的美:实时预测视频分辨率和比特率的加密视频流

Sarah Wassermann, Michael Seufert, P. Casas, Li Gang, Kuang Li
{"title":"让我解密你的美:实时预测视频分辨率和比特率的加密视频流","authors":"Sarah Wassermann, Michael Seufert, P. Casas, Li Gang, Kuang Li","doi":"10.23919/TMA.2019.8784589","DOIUrl":null,"url":null,"abstract":"The dynamic adaptation of the video quality induced by HTTP Adaptive Streaming (HAS) technology introduces new Quality of Experience (QoE) metrics beyond re-buffering. In this work we address the problem of real-time QoE monitoring of HAS, focusing on the continuous prediction of video resolution and average video bitrate, for the particular case of YouTube. Through empirical evaluations over a large video dataset, we demonstrate that it is possible to accurately predict the specific video resolution, as well as the average video bitrate, both in real time, and using a time granularity as small as one new prediction every second, not achieved by other proposals in the literature.","PeriodicalId":241672,"journal":{"name":"2019 Network Traffic Measurement and Analysis Conference (TMA)","volume":"30 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Let me Decrypt your Beauty: Real-time Prediction of Video Resolution and Bitrate for Encrypted Video Streaming\",\"authors\":\"Sarah Wassermann, Michael Seufert, P. Casas, Li Gang, Kuang Li\",\"doi\":\"10.23919/TMA.2019.8784589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic adaptation of the video quality induced by HTTP Adaptive Streaming (HAS) technology introduces new Quality of Experience (QoE) metrics beyond re-buffering. In this work we address the problem of real-time QoE monitoring of HAS, focusing on the continuous prediction of video resolution and average video bitrate, for the particular case of YouTube. Through empirical evaluations over a large video dataset, we demonstrate that it is possible to accurately predict the specific video resolution, as well as the average video bitrate, both in real time, and using a time granularity as small as one new prediction every second, not achieved by other proposals in the literature.\",\"PeriodicalId\":241672,\"journal\":{\"name\":\"2019 Network Traffic Measurement and Analysis Conference (TMA)\",\"volume\":\"30 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Network Traffic Measurement and Analysis Conference (TMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/TMA.2019.8784589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2019.8784589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

由HTTP自适应流(HAS)技术引起的视频质量的动态适应引入了新的体验质量(QoE)指标,而不是重新缓冲。在这项工作中,我们解决了实时QoE监控HAS的问题,重点关注视频分辨率和平均视频比特率的连续预测,针对YouTube的特殊情况。通过对大型视频数据集的经验评估,我们证明可以实时准确地预测特定的视频分辨率,以及平均视频比特率,并且使用小到每秒一个新的预测的时间粒度,这是文献中其他建议无法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Let me Decrypt your Beauty: Real-time Prediction of Video Resolution and Bitrate for Encrypted Video Streaming
The dynamic adaptation of the video quality induced by HTTP Adaptive Streaming (HAS) technology introduces new Quality of Experience (QoE) metrics beyond re-buffering. In this work we address the problem of real-time QoE monitoring of HAS, focusing on the continuous prediction of video resolution and average video bitrate, for the particular case of YouTube. Through empirical evaluations over a large video dataset, we demonstrate that it is possible to accurately predict the specific video resolution, as well as the average video bitrate, both in real time, and using a time granularity as small as one new prediction every second, not achieved by other proposals in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信