发现使用未标记数据进行文本挖掘的逻辑关系

Ki Chan, Wai Lam, Tak-Lam Wong
{"title":"发现使用未标记数据进行文本挖掘的逻辑关系","authors":"Ki Chan, Wai Lam, Tak-Lam Wong","doi":"10.5555/1937055.1937085","DOIUrl":null,"url":null,"abstract":"We have developed a framework to discover new logic formulae for the adaptation of first-order logic knowledge from a source domain to a target domain for solving the same task. We investigate an approach of adapting the source domain model, represented in Markov Logic Network (MLN), to the target domain using unlabeled data only. The existing logic formulae in the source domain MLN may not be sufficient for the target domain. New logic formulae for are discovered by analyzing the correlations between the candidate relations and the core relations.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of logic relations for text mining adaptation using unlabeled data\",\"authors\":\"Ki Chan, Wai Lam, Tak-Lam Wong\",\"doi\":\"10.5555/1937055.1937085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a framework to discover new logic formulae for the adaptation of first-order logic knowledge from a source domain to a target domain for solving the same task. We investigate an approach of adapting the source domain model, represented in Markov Logic Network (MLN), to the target domain using unlabeled data only. The existing logic formulae in the source domain MLN may not be sufficient for the target domain. New logic formulae for are discovered by analyzing the correlations between the candidate relations and the core relations.\",\"PeriodicalId\":120472,\"journal\":{\"name\":\"RIAO Conference\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RIAO Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/1937055.1937085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1937055.1937085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个框架来发现新的逻辑公式,用于将一阶逻辑知识从源域适应到目标域以解决相同的任务。我们研究了一种仅使用未标记数据将马尔可夫逻辑网络(MLN)中表示的源域模型适应为目标域的方法。源域MLN中现有的逻辑公式可能不适用于目标域。通过分析候选关系与核心关系之间的相关性,发现了新的逻辑公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of logic relations for text mining adaptation using unlabeled data
We have developed a framework to discover new logic formulae for the adaptation of first-order logic knowledge from a source domain to a target domain for solving the same task. We investigate an approach of adapting the source domain model, represented in Markov Logic Network (MLN), to the target domain using unlabeled data only. The existing logic formulae in the source domain MLN may not be sufficient for the target domain. New logic formulae for are discovered by analyzing the correlations between the candidate relations and the core relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信