基于小波分解和k近邻的脑电图情绪分类

A. E. Putra, Catur Atmaji, Fajrul Ghaleb
{"title":"基于小波分解和k近邻的脑电图情绪分类","authors":"A. E. Putra, Catur Atmaji, Fajrul Ghaleb","doi":"10.1109/ICSTC.2018.8528652","DOIUrl":null,"url":null,"abstract":"Research on the correlation of EEG signals to emotions based on high/low arousal and valence, has been done before. Some research using the Eigen-Emotion Pattern Kernel method and the Support Vector Machine. The others using the Higuchi Fractal Dimension (FD) Spectrum, the Multifractal Detrended Fluctuation Analysis (MDFA) and the Hidden Markov Model (HMM), but the accuracy is not too good. This research uses Wavelet Decomposition and k-Nearest Neighbor to improve accuracy. The results show that the optimum k values of the k-Nearest Neighbor parameters for this research are 21. Valence's classification accuracy results using Wavelet and k-NN, compared with previous research has the same relative accuracy, ie 57.5%. While the result of arousal classification accuracy using wavelet and k-NN is 64.0%, better than previous research.","PeriodicalId":196768,"journal":{"name":"2018 4th International Conference on Science and Technology (ICST)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"EEG-Based Emotion Classification Using Wavelet Decomposition and K-Nearest Neighbor\",\"authors\":\"A. E. Putra, Catur Atmaji, Fajrul Ghaleb\",\"doi\":\"10.1109/ICSTC.2018.8528652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on the correlation of EEG signals to emotions based on high/low arousal and valence, has been done before. Some research using the Eigen-Emotion Pattern Kernel method and the Support Vector Machine. The others using the Higuchi Fractal Dimension (FD) Spectrum, the Multifractal Detrended Fluctuation Analysis (MDFA) and the Hidden Markov Model (HMM), but the accuracy is not too good. This research uses Wavelet Decomposition and k-Nearest Neighbor to improve accuracy. The results show that the optimum k values of the k-Nearest Neighbor parameters for this research are 21. Valence's classification accuracy results using Wavelet and k-NN, compared with previous research has the same relative accuracy, ie 57.5%. While the result of arousal classification accuracy using wavelet and k-NN is 64.0%, better than previous research.\",\"PeriodicalId\":196768,\"journal\":{\"name\":\"2018 4th International Conference on Science and Technology (ICST)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Science and Technology (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTC.2018.8528652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Science and Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTC.2018.8528652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

基于高/低唤醒和效价的脑电图信号与情绪的相关性研究,以前已经做过。利用特征-情感模式核方法和支持向量机进行了一些研究。其他方法采用Higuchi分形维数(FD)谱、多重分形去趋势波动分析(MDFA)和隐马尔可夫模型(HMM),但精度都不太好。本研究采用小波分解和k近邻技术来提高精度。结果表明,本研究的k近邻参数的最优k值为21。使用小波和k-NN的分类精度结果,与以往的研究相比具有相同的相对精度,为57.5%。而基于小波和k-NN的唤醒分类准确率为64.0%,优于前人的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG-Based Emotion Classification Using Wavelet Decomposition and K-Nearest Neighbor
Research on the correlation of EEG signals to emotions based on high/low arousal and valence, has been done before. Some research using the Eigen-Emotion Pattern Kernel method and the Support Vector Machine. The others using the Higuchi Fractal Dimension (FD) Spectrum, the Multifractal Detrended Fluctuation Analysis (MDFA) and the Hidden Markov Model (HMM), but the accuracy is not too good. This research uses Wavelet Decomposition and k-Nearest Neighbor to improve accuracy. The results show that the optimum k values of the k-Nearest Neighbor parameters for this research are 21. Valence's classification accuracy results using Wavelet and k-NN, compared with previous research has the same relative accuracy, ie 57.5%. While the result of arousal classification accuracy using wavelet and k-NN is 64.0%, better than previous research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信