用门控注意和多重相似度解决文档级汉语事件共指

Haoyi Cheng, Peifeng Li, Qiaoming Zhu
{"title":"用门控注意和多重相似度解决文档级汉语事件共指","authors":"Haoyi Cheng, Peifeng Li, Qiaoming Zhu","doi":"10.1109/IALP48816.2019.9037674","DOIUrl":null,"url":null,"abstract":"Event coreference resolution is a challenging task. To address the issues of the influence on event-independent information in event mentions and the flexible and diverse sentence structure in Chinese language, this paper introduces a GANN (Gated Attention Neural Networks) model to document-level Chinese event coreference resolution. GANN introduces a gated attention mechanism to select eventrelated information from event mentions and then filter noisy information. Moreover, GANN not only uses a single Cosine distance to calculate the linear distance between two event mentions, but also introduces multi-mechanisms, i.e., Bilinear distance and Single Layer Network, to further calculate the linear and nonlinear distances. The experimental results on the ACE 2005 Chinese corpus illustrate that our model GANN outperforms the state-of-the-art baselines.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing Gated Attention and Multi-similarities to Resolve Document-level Chinese Event Coreference\",\"authors\":\"Haoyi Cheng, Peifeng Li, Qiaoming Zhu\",\"doi\":\"10.1109/IALP48816.2019.9037674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event coreference resolution is a challenging task. To address the issues of the influence on event-independent information in event mentions and the flexible and diverse sentence structure in Chinese language, this paper introduces a GANN (Gated Attention Neural Networks) model to document-level Chinese event coreference resolution. GANN introduces a gated attention mechanism to select eventrelated information from event mentions and then filter noisy information. Moreover, GANN not only uses a single Cosine distance to calculate the linear distance between two event mentions, but also introduces multi-mechanisms, i.e., Bilinear distance and Single Layer Network, to further calculate the linear and nonlinear distances. The experimental results on the ACE 2005 Chinese corpus illustrate that our model GANN outperforms the state-of-the-art baselines.\",\"PeriodicalId\":208066,\"journal\":{\"name\":\"2019 International Conference on Asian Language Processing (IALP)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP48816.2019.9037674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

事件共引用解析是一项具有挑战性的任务。为了解决事件提及对事件无关信息的影响以及汉语句子结构的灵活多变等问题,本文引入了一种基于GANN(门控注意神经网络)的文档级汉语事件共指解析模型。GANN引入了一种门控注意机制,从事件提及中选择与事件相关的信息,然后过滤噪声信息。此外,GANN不仅使用单个余弦距离来计算两个事件提及之间的线性距离,而且还引入了双线性距离和单层网络等多机制来进一步计算线性和非线性距离。在ACE 2005中文语料库上的实验结果表明,我们的模型GANN优于最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Employing Gated Attention and Multi-similarities to Resolve Document-level Chinese Event Coreference
Event coreference resolution is a challenging task. To address the issues of the influence on event-independent information in event mentions and the flexible and diverse sentence structure in Chinese language, this paper introduces a GANN (Gated Attention Neural Networks) model to document-level Chinese event coreference resolution. GANN introduces a gated attention mechanism to select eventrelated information from event mentions and then filter noisy information. Moreover, GANN not only uses a single Cosine distance to calculate the linear distance between two event mentions, but also introduces multi-mechanisms, i.e., Bilinear distance and Single Layer Network, to further calculate the linear and nonlinear distances. The experimental results on the ACE 2005 Chinese corpus illustrate that our model GANN outperforms the state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信