W-net:胸腔计算机断层扫描中危险器官自动分割的网络结构

Wenhui Zhao, Haibin Chen, Yao Lu
{"title":"W-net:胸腔计算机断层扫描中危险器官自动分割的网络结构","authors":"Wenhui Zhao, Haibin Chen, Yao Lu","doi":"10.1145/3399637.3399642","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of Organs at Risk (OAR) on Computed Tomography (CT) images is a crucial step in radiotherapy treatment planning. In this paper, we propose a novel W-Net structure combining a U-Net segmentation network and an adversarial network (GAN) to reconstruct the OAR. With the reconstruction loss, W-Net can better learn effective features and get more accuracy segmentation result than U-Net. We test our method in the SegTHOR challenge which focus on 4 thoracic OAR: esophagus, heart, trachea and aorta. The average Dice Similarity Coefficient (%) of W-Net and U-Net on these 4 OAR are 80.6 versus 79.6, 93.8 versus 93.4, 88.3 versus 88.1, and 91.5 versus 90.6. The Hausdorff Distance (HD) are 0.5905 versus 0.6923, 0.2055 versus 0.2215, 0.7162 versus 0.7374, and 0.8061 versus 0.9290.","PeriodicalId":248664,"journal":{"name":"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"W-net: A Network Structure for Automatic Segmentation of Organs at Risk in Thorax Computed Tomography\",\"authors\":\"Wenhui Zhao, Haibin Chen, Yao Lu\",\"doi\":\"10.1145/3399637.3399642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of Organs at Risk (OAR) on Computed Tomography (CT) images is a crucial step in radiotherapy treatment planning. In this paper, we propose a novel W-Net structure combining a U-Net segmentation network and an adversarial network (GAN) to reconstruct the OAR. With the reconstruction loss, W-Net can better learn effective features and get more accuracy segmentation result than U-Net. We test our method in the SegTHOR challenge which focus on 4 thoracic OAR: esophagus, heart, trachea and aorta. The average Dice Similarity Coefficient (%) of W-Net and U-Net on these 4 OAR are 80.6 versus 79.6, 93.8 versus 93.4, 88.3 versus 88.1, and 91.5 versus 90.6. The Hausdorff Distance (HD) are 0.5905 versus 0.6923, 0.2055 versus 0.2215, 0.7162 versus 0.7374, and 0.8061 versus 0.9290.\",\"PeriodicalId\":248664,\"journal\":{\"name\":\"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3399637.3399642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399637.3399642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

计算机断层扫描(CT)图像中危险器官(OAR)的准确分割是制定放射治疗计划的关键步骤。在本文中,我们提出了一种新的W-Net结构,结合U-Net分割网络和对抗网络(GAN)来重建桨叶。利用重构损失,W-Net可以更好地学习有效特征,得到比U-Net更准确的分割结果。我们在SegTHOR挑战中测试了我们的方法,该挑战主要针对4个胸部桨:食道、心脏、气管和主动脉。W-Net和U-Net在这4个桨上的平均骰子相似系数(%)分别为80.6比79.6、93.8比93.4、88.3比88.1、91.5比90.6。豪斯多夫距离(HD)分别为0.5905 vs 0.6923, 0.2055 vs 0.2215, 0.7162 vs 0.7374, 0.8061 vs 0.9290。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
W-net: A Network Structure for Automatic Segmentation of Organs at Risk in Thorax Computed Tomography
Accurate segmentation of Organs at Risk (OAR) on Computed Tomography (CT) images is a crucial step in radiotherapy treatment planning. In this paper, we propose a novel W-Net structure combining a U-Net segmentation network and an adversarial network (GAN) to reconstruct the OAR. With the reconstruction loss, W-Net can better learn effective features and get more accuracy segmentation result than U-Net. We test our method in the SegTHOR challenge which focus on 4 thoracic OAR: esophagus, heart, trachea and aorta. The average Dice Similarity Coefficient (%) of W-Net and U-Net on these 4 OAR are 80.6 versus 79.6, 93.8 versus 93.4, 88.3 versus 88.1, and 91.5 versus 90.6. The Hausdorff Distance (HD) are 0.5905 versus 0.6923, 0.2055 versus 0.2215, 0.7162 versus 0.7374, and 0.8061 versus 0.9290.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信