基于本体的多模信息融合方法

Chunjiang Zhao, Huarui Wu, Ronghua Gao
{"title":"基于本体的多模信息融合方法","authors":"Chunjiang Zhao, Huarui Wu, Ronghua Gao","doi":"10.1109/CCIS.2011.6045031","DOIUrl":null,"url":null,"abstract":"In order to better use with massive, heterogeneous, multimode and other characteristics of information, eliminate redundancy, the formation of the system environment is relatively complete and consistent description. It can ensure rapid and correct decision-making, planning and reflection. In this paper, a multimode information fusion method is proposed aimed at the shortcomings of hierarchical structure. Different databases and data files between different formats can be shielded, while the fuzzy neural network algorithm, make text, images and video seamless fusion by continuous learning. Experimental results show that the method of this paper is better than exist on fusion algorithms at the right rate, leakage pick up rate and false acceptance rata.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ontology-based multimode information fusion method\",\"authors\":\"Chunjiang Zhao, Huarui Wu, Ronghua Gao\",\"doi\":\"10.1109/CCIS.2011.6045031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to better use with massive, heterogeneous, multimode and other characteristics of information, eliminate redundancy, the formation of the system environment is relatively complete and consistent description. It can ensure rapid and correct decision-making, planning and reflection. In this paper, a multimode information fusion method is proposed aimed at the shortcomings of hierarchical structure. Different databases and data files between different formats can be shielded, while the fuzzy neural network algorithm, make text, images and video seamless fusion by continuous learning. Experimental results show that the method of this paper is better than exist on fusion algorithms at the right rate, leakage pick up rate and false acceptance rata.\",\"PeriodicalId\":128504,\"journal\":{\"name\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2011.6045031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地利用具有海量、异构、多模等特点的信息,消除冗余,形成系统环境相对完整和一致的描述。它可以确保快速、正确的决策、计划和反思。针对分层结构的缺点,提出了一种多模式信息融合方法。可以屏蔽不同的数据库和不同格式之间的数据文件,而模糊神经网络算法通过不断学习,使文本、图像和视频无缝融合。实验结果表明,该方法在正确速率、泄漏检出率和误接受率方面都优于现有的融合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ontology-based multimode information fusion method
In order to better use with massive, heterogeneous, multimode and other characteristics of information, eliminate redundancy, the formation of the system environment is relatively complete and consistent description. It can ensure rapid and correct decision-making, planning and reflection. In this paper, a multimode information fusion method is proposed aimed at the shortcomings of hierarchical structure. Different databases and data files between different formats can be shielded, while the fuzzy neural network algorithm, make text, images and video seamless fusion by continuous learning. Experimental results show that the method of this paper is better than exist on fusion algorithms at the right rate, leakage pick up rate and false acceptance rata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信