关于矩形行列式多项式和永久多项式的显式分支规划

V. Arvind, Abhranil Chatterjee, Rajit Datta, P. Mukhopadhyay
{"title":"关于矩形行列式多项式和永久多项式的显式分支规划","authors":"V. Arvind, Abhranil Chatterjee, Rajit Datta, P. Mukhopadhyay","doi":"10.4230/LIPIcs.ISAAC.2019.38","DOIUrl":null,"url":null,"abstract":"We study the arithmetic circuit complexity of some well-known family of polynomials through the lens of parameterized complexity. Our main focus is on the construction of explicit algebraic branching programs (ABP) for determinant and permanent polynomials of the \\emph{rectangular} symbolic matrix in both commutative and noncommutative settings. The main results are: \n1. We show an explicit $O^{*}({n\\choose {\\downarrow k/2}})$-size ABP construction for noncommutative permanent polynomial of $k\\times n$ symbolic matrix. We obtain this via an explicit ABP construction of size $O^{*}({n\\choose {\\downarrow k/2}})$ for $S_{n,k}^*$, noncommutative symmetrized version of the elementary symmetric polynomial $S_{n,k}$. \n2. We obtain an explicit $O^{*}(2^k)$-size ABP construction for the commutative rectangular determinant polynomial of the $k\\times n$ symbolic matrix. \n3. In contrast, we show that evaluating the rectangular noncommutative determinant over rational matrices is $W[1]$-hard.","PeriodicalId":202345,"journal":{"name":"Chic. J. Theor. Comput. Sci.","volume":"475 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Explicit Branching Programs for the Rectangular Determinant and Permanent Polynomials\",\"authors\":\"V. Arvind, Abhranil Chatterjee, Rajit Datta, P. Mukhopadhyay\",\"doi\":\"10.4230/LIPIcs.ISAAC.2019.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the arithmetic circuit complexity of some well-known family of polynomials through the lens of parameterized complexity. Our main focus is on the construction of explicit algebraic branching programs (ABP) for determinant and permanent polynomials of the \\\\emph{rectangular} symbolic matrix in both commutative and noncommutative settings. The main results are: \\n1. We show an explicit $O^{*}({n\\\\choose {\\\\downarrow k/2}})$-size ABP construction for noncommutative permanent polynomial of $k\\\\times n$ symbolic matrix. We obtain this via an explicit ABP construction of size $O^{*}({n\\\\choose {\\\\downarrow k/2}})$ for $S_{n,k}^*$, noncommutative symmetrized version of the elementary symmetric polynomial $S_{n,k}$. \\n2. We obtain an explicit $O^{*}(2^k)$-size ABP construction for the commutative rectangular determinant polynomial of the $k\\\\times n$ symbolic matrix. \\n3. In contrast, we show that evaluating the rectangular noncommutative determinant over rational matrices is $W[1]$-hard.\",\"PeriodicalId\":202345,\"journal\":{\"name\":\"Chic. J. Theor. Comput. Sci.\",\"volume\":\"475 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chic. J. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ISAAC.2019.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chic. J. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ISAAC.2019.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文从参数化复杂度的角度研究了一些著名多项式族的算术电路复杂度。我们的主要重点是在交换和非交换条件下\emph{矩形}符号矩阵的行列式多项式和永久多项式的显式代数分支规划(ABP)的构造。主要结果是:1。我们给出了$k\times n$符号矩阵的非交换永久多项式的一个显式的$O^{*}({n\choose {\downarrow k/2}})$ -大小的ABP构造。我们通过一个大小为$O^{*}({n\choose {\downarrow k/2}})$的显式ABP构造来得到它,对于$S_{n,k}^*$,初等对称多项式$S_{n,k}$的非交换对称版本。2. 我们得到了$k\times n$符号矩阵的可交换矩形行列式多项式的一个显式的$O^{*}(2^k)$ -大小的ABP构造。3.相反,我们证明在有理矩阵上求矩形非交换行列式是$W[1]$ -困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Explicit Branching Programs for the Rectangular Determinant and Permanent Polynomials
We study the arithmetic circuit complexity of some well-known family of polynomials through the lens of parameterized complexity. Our main focus is on the construction of explicit algebraic branching programs (ABP) for determinant and permanent polynomials of the \emph{rectangular} symbolic matrix in both commutative and noncommutative settings. The main results are: 1. We show an explicit $O^{*}({n\choose {\downarrow k/2}})$-size ABP construction for noncommutative permanent polynomial of $k\times n$ symbolic matrix. We obtain this via an explicit ABP construction of size $O^{*}({n\choose {\downarrow k/2}})$ for $S_{n,k}^*$, noncommutative symmetrized version of the elementary symmetric polynomial $S_{n,k}$. 2. We obtain an explicit $O^{*}(2^k)$-size ABP construction for the commutative rectangular determinant polynomial of the $k\times n$ symbolic matrix. 3. In contrast, we show that evaluating the rectangular noncommutative determinant over rational matrices is $W[1]$-hard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信