非线性最佳切比雪夫近似和样条

B. Popov
{"title":"非线性最佳切比雪夫近似和样条","authors":"B. Popov","doi":"10.1109/MMET.1996.565662","DOIUrl":null,"url":null,"abstract":"The necessity of using parametric nonlinear expressions and splines arises because real physical processes are described by many different analytical dependencies. The classic technique of finding the best Chebyshev approximation is also based on nonlinear approximations. But such approximations are not always possible. The author formulates a theorem that allows one to establish the condition of existence of the best Chebyshev approximation of a chosen kind.","PeriodicalId":270641,"journal":{"name":"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nonlinear best Chebyshev approximations and splines\",\"authors\":\"B. Popov\",\"doi\":\"10.1109/MMET.1996.565662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The necessity of using parametric nonlinear expressions and splines arises because real physical processes are described by many different analytical dependencies. The classic technique of finding the best Chebyshev approximation is also based on nonlinear approximations. But such approximations are not always possible. The author formulates a theorem that allows one to establish the condition of existence of the best Chebyshev approximation of a chosen kind.\",\"PeriodicalId\":270641,\"journal\":{\"name\":\"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.1996.565662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.1996.565662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

使用参数非线性表达式和样条的必要性,因为实际的物理过程是由许多不同的分析依赖关系来描述的。寻找最佳切比雪夫近似的经典技术也是基于非线性近似。但这种近似并不总是可能的。作者提出了一个定理,使人们能够确定所选的一类最佳切比雪夫近似存在的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear best Chebyshev approximations and splines
The necessity of using parametric nonlinear expressions and splines arises because real physical processes are described by many different analytical dependencies. The classic technique of finding the best Chebyshev approximation is also based on nonlinear approximations. But such approximations are not always possible. The author formulates a theorem that allows one to establish the condition of existence of the best Chebyshev approximation of a chosen kind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信