{"title":"几何马尔可夫更新过程与期权价格公式的扩散逼近","authors":"A. Swishchuk, M. S. Islam","doi":"10.1155/2010/347105","DOIUrl":null,"url":null,"abstract":"We consider the geometric Markov renewal processes as a model for a security market and study this processes in a diffusion approximation scheme. Weak convergence analysis and rates of convergence of ergodic geometric Markov renewal processes in diffusion scheme are presented. We present European call option pricing formulas in the case of ergodic, double-averaged, and merged diffusion geometric Markov renewal processes.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Diffusion Approximations of the Geometric Markov Renewal Processes and Option Price Formulas\",\"authors\":\"A. Swishchuk, M. S. Islam\",\"doi\":\"10.1155/2010/347105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the geometric Markov renewal processes as a model for a security market and study this processes in a diffusion approximation scheme. Weak convergence analysis and rates of convergence of ergodic geometric Markov renewal processes in diffusion scheme are presented. We present European call option pricing formulas in the case of ergodic, double-averaged, and merged diffusion geometric Markov renewal processes.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2010/347105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/347105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diffusion Approximations of the Geometric Markov Renewal Processes and Option Price Formulas
We consider the geometric Markov renewal processes as a model for a security market and study this processes in a diffusion approximation scheme. Weak convergence analysis and rates of convergence of ergodic geometric Markov renewal processes in diffusion scheme are presented. We present European call option pricing formulas in the case of ergodic, double-averaged, and merged diffusion geometric Markov renewal processes.