Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, Wei-Ying Ma, HongJiang Zhang
{"title":"图像检索中主动反馈的子空间聚类和标签传播","authors":"Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, Wei-Ying Ma, HongJiang Zhang","doi":"10.1109/MMMC.2005.69","DOIUrl":null,"url":null,"abstract":"In recent years, relevance feedback has been studied extensively as a way to improve performance of content-based image retrieval (CBIR). However, since users are usually unwilling to provide many feedbacks, the insufficiency of the training samples limited the success of relevance feedback. To tackle this problem, we propose two coupled algorithms: (i) overlapped subspace clustering to select representative images for user’s feedback; and (ii) multi-subspace label propagation to include unlabeled data in the training process. As these two algorithms are both working on sub feature spaces of the image database, they can not only deal with the insufficient training samples but also well capture the user’s attention during the retrieval process. Experimental results on a large database of general-purposed images demonstrated the high effectiveness of our proposed algorithms.","PeriodicalId":121228,"journal":{"name":"11th International Multimedia Modelling Conference","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Subspace Clustering and Label Propagation for Active Feedback in Image Retrieval\",\"authors\":\"Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, Wei-Ying Ma, HongJiang Zhang\",\"doi\":\"10.1109/MMMC.2005.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, relevance feedback has been studied extensively as a way to improve performance of content-based image retrieval (CBIR). However, since users are usually unwilling to provide many feedbacks, the insufficiency of the training samples limited the success of relevance feedback. To tackle this problem, we propose two coupled algorithms: (i) overlapped subspace clustering to select representative images for user’s feedback; and (ii) multi-subspace label propagation to include unlabeled data in the training process. As these two algorithms are both working on sub feature spaces of the image database, they can not only deal with the insufficient training samples but also well capture the user’s attention during the retrieval process. Experimental results on a large database of general-purposed images demonstrated the high effectiveness of our proposed algorithms.\",\"PeriodicalId\":121228,\"journal\":{\"name\":\"11th International Multimedia Modelling Conference\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th International Multimedia Modelling Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMMC.2005.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th International Multimedia Modelling Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMMC.2005.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subspace Clustering and Label Propagation for Active Feedback in Image Retrieval
In recent years, relevance feedback has been studied extensively as a way to improve performance of content-based image retrieval (CBIR). However, since users are usually unwilling to provide many feedbacks, the insufficiency of the training samples limited the success of relevance feedback. To tackle this problem, we propose two coupled algorithms: (i) overlapped subspace clustering to select representative images for user’s feedback; and (ii) multi-subspace label propagation to include unlabeled data in the training process. As these two algorithms are both working on sub feature spaces of the image database, they can not only deal with the insufficient training samples but also well capture the user’s attention during the retrieval process. Experimental results on a large database of general-purposed images demonstrated the high effectiveness of our proposed algorithms.