大规模潜在语义索引的快速近似算法

Dell Zhang, Zheng Zhu
{"title":"大规模潜在语义索引的快速近似算法","authors":"Dell Zhang, Zheng Zhu","doi":"10.1109/ICDIM.2008.4746764","DOIUrl":null,"url":null,"abstract":"Latent semantic indexing (LSI) is an effective method to discover the underlying semantic structure of data. It has numerous applications in information retrieval and data mining. However, the computational complexity of LSI may be prohibitively high when applied to very large datasets. In this paper, we present a fast approximate algorithm for large-scale LSI that is conceptually simple and theoretically justified. Our main contribution is to show that the proposed algorithm has provable error bound and linear computational complexity.","PeriodicalId":415013,"journal":{"name":"2008 Third International Conference on Digital Information Management","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A fast approximate algorithm for large-scale Latent Semantic Indexing\",\"authors\":\"Dell Zhang, Zheng Zhu\",\"doi\":\"10.1109/ICDIM.2008.4746764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latent semantic indexing (LSI) is an effective method to discover the underlying semantic structure of data. It has numerous applications in information retrieval and data mining. However, the computational complexity of LSI may be prohibitively high when applied to very large datasets. In this paper, we present a fast approximate algorithm for large-scale LSI that is conceptually simple and theoretically justified. Our main contribution is to show that the proposed algorithm has provable error bound and linear computational complexity.\",\"PeriodicalId\":415013,\"journal\":{\"name\":\"2008 Third International Conference on Digital Information Management\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Third International Conference on Digital Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2008.4746764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2008.4746764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

潜在语义索引(LSI)是一种发现数据底层语义结构的有效方法。它在信息检索和数据挖掘中有着广泛的应用。然而,当应用于非常大的数据集时,大规模集成电路的计算复杂性可能会高得令人望而却步。在本文中,我们提出了一种快速近似算法,用于大规模大规模集成电路,概念简单,理论上合理。我们的主要贡献是表明所提出的算法具有可证明的误差界和线性计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast approximate algorithm for large-scale Latent Semantic Indexing
Latent semantic indexing (LSI) is an effective method to discover the underlying semantic structure of data. It has numerous applications in information retrieval and data mining. However, the computational complexity of LSI may be prohibitively high when applied to very large datasets. In this paper, we present a fast approximate algorithm for large-scale LSI that is conceptually simple and theoretically justified. Our main contribution is to show that the proposed algorithm has provable error bound and linear computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信