一种新的变步长等变自适应信源分离算法

Xiaofu Xie, Qingyan Shi, R. Wu
{"title":"一种新的变步长等变自适应信源分离算法","authors":"Xiaofu Xie, Qingyan Shi, R. Wu","doi":"10.1109/APCC.2007.4433478","DOIUrl":null,"url":null,"abstract":"In this paper, variable step-size blind source separation (BSS) algorithms are investigated. Since it is hard to achieve both fast convergence and stable tracking performance for a given step-size, step-size is crucial for the equivariant adaptive source separation (EASI) algorithms. Firstly, the measurement of the independence for the output signals is analyzed, then, a new EASI algorithm whose step-size is changed adaptively by mutual information is proposed. Computer simulation results show that the new algorithm has satisfactory convergence and stable tracking performance.","PeriodicalId":282306,"journal":{"name":"2007 Asia-Pacific Conference on Communications","volume":"444 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new variable step-size equivariant adaptive source separation algorithm\",\"authors\":\"Xiaofu Xie, Qingyan Shi, R. Wu\",\"doi\":\"10.1109/APCC.2007.4433478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, variable step-size blind source separation (BSS) algorithms are investigated. Since it is hard to achieve both fast convergence and stable tracking performance for a given step-size, step-size is crucial for the equivariant adaptive source separation (EASI) algorithms. Firstly, the measurement of the independence for the output signals is analyzed, then, a new EASI algorithm whose step-size is changed adaptively by mutual information is proposed. Computer simulation results show that the new algorithm has satisfactory convergence and stable tracking performance.\",\"PeriodicalId\":282306,\"journal\":{\"name\":\"2007 Asia-Pacific Conference on Communications\",\"volume\":\"444 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Asia-Pacific Conference on Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCC.2007.4433478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Asia-Pacific Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCC.2007.4433478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了变步长盲源分离(BSS)算法。由于在给定步长下难以同时实现快速收敛和稳定的跟踪性能,因此步长对于等变自适应源分离(EASI)算法至关重要。首先分析了输出信号独立性的度量,然后提出了一种基于互信息自适应改变步长的EASI算法。计算机仿真结果表明,该算法具有良好的收敛性和稳定的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new variable step-size equivariant adaptive source separation algorithm
In this paper, variable step-size blind source separation (BSS) algorithms are investigated. Since it is hard to achieve both fast convergence and stable tracking performance for a given step-size, step-size is crucial for the equivariant adaptive source separation (EASI) algorithms. Firstly, the measurement of the independence for the output signals is analyzed, then, a new EASI algorithm whose step-size is changed adaptively by mutual information is proposed. Computer simulation results show that the new algorithm has satisfactory convergence and stable tracking performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信