基于fcmdd的关系数据鲁棒c均值线性聚类

Takeshi Yamamoto, Katsuhiro Honda, A. Notsu, H. Ichihashi
{"title":"基于fcmdd的关系数据鲁棒c均值线性聚类","authors":"Takeshi Yamamoto, Katsuhiro Honda, A. Notsu, H. Ichihashi","doi":"10.1109/ICMLA.2011.164","DOIUrl":null,"url":null,"abstract":"Relational clustering is actively studied in data mining, in which intrinsic data structure is summarized into cluster structure. A linear fuzzy clustering model based on Fuzzy c-Medoids (FCMdd) is proposed for extracting intrinsic local linear substructures from relational data. Alternative Fuzzy c- Means (AFCM) is an extension of Fuzzy c-means, in which a modified distance measure instead of the conventional Euclidean distance is used based on the robust M-estimation concept. In this paper, the FCMdd-based linear clustering model is further modified in order to extract linear substructure from relational data including outliers, using a pseudo-M-estimation procedure with a weight function for the modified distance measure in AFCM.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust FCMdd-based Linear Clustering for Relational Data with Alternative c-Means Criterion\",\"authors\":\"Takeshi Yamamoto, Katsuhiro Honda, A. Notsu, H. Ichihashi\",\"doi\":\"10.1109/ICMLA.2011.164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relational clustering is actively studied in data mining, in which intrinsic data structure is summarized into cluster structure. A linear fuzzy clustering model based on Fuzzy c-Medoids (FCMdd) is proposed for extracting intrinsic local linear substructures from relational data. Alternative Fuzzy c- Means (AFCM) is an extension of Fuzzy c-means, in which a modified distance measure instead of the conventional Euclidean distance is used based on the robust M-estimation concept. In this paper, the FCMdd-based linear clustering model is further modified in order to extract linear substructure from relational data including outliers, using a pseudo-M-estimation procedure with a weight function for the modified distance measure in AFCM.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关系聚类在数据挖掘中得到了积极的研究,它将固有的数据结构归纳为聚类结构。提出了一种基于模糊c-介质的线性模糊聚类模型,用于从关系数据中提取固有的局部线性子结构。备选模糊c均值(AFCM)是模糊c均值的扩展,它基于鲁棒m估计的概念,使用一种改进的距离度量来代替传统的欧几里得距离。本文对基于fcmdd的线性聚类模型进行了进一步的修正,利用带权函数的伪m估计过程对修正后的AFCM中距离度量进行了修正,以便从包括离群值在内的关系数据中提取线性子结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust FCMdd-based Linear Clustering for Relational Data with Alternative c-Means Criterion
Relational clustering is actively studied in data mining, in which intrinsic data structure is summarized into cluster structure. A linear fuzzy clustering model based on Fuzzy c-Medoids (FCMdd) is proposed for extracting intrinsic local linear substructures from relational data. Alternative Fuzzy c- Means (AFCM) is an extension of Fuzzy c-means, in which a modified distance measure instead of the conventional Euclidean distance is used based on the robust M-estimation concept. In this paper, the FCMdd-based linear clustering model is further modified in order to extract linear substructure from relational data including outliers, using a pseudo-M-estimation procedure with a weight function for the modified distance measure in AFCM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信